М.: ФИЗМАТЛИТ, 2001. - 240 с.
В книге излагаются основы нового направления в групповом анализе, связанного с приложением групп Ли к конечно-разностным уравнениям, сеткам, разностным функционалам.
Показывается, что наличие непрерывной симметрии у разностных моделей приводит так же, как и в классическом случае инвариантности дифференциальных уравнений, к понижению порядка и интегрируемости обыкновенных разностных уравнений, к наличию инвариантных (точных) решений у уравнений в частных разностных производных, к существованию разностных законов сохранения у инвариантных вариационных задач.
Рассмотрены многочисленные примеры построения разностных моделей, в которых полностью сохранена непрерывная симметрия исходных дифференциальных уравнений.
Для специалистов в области математической физики и вычислительной математики, интересующихся вопросами качественного анализа дискретных уравнений, а также для аспирантов и студентов соответствующих специальностей.
В книге излагаются основы нового направления в групповом анализе, связанного с приложением групп Ли к конечно-разностным уравнениям, сеткам, разностным функционалам.
Показывается, что наличие непрерывной симметрии у разностных моделей приводит так же, как и в классическом случае инвариантности дифференциальных уравнений, к понижению порядка и интегрируемости обыкновенных разностных уравнений, к наличию инвариантных (точных) решений у уравнений в частных разностных производных, к существованию разностных законов сохранения у инвариантных вариационных задач.
Рассмотрены многочисленные примеры построения разностных моделей, в которых полностью сохранена непрерывная симметрия исходных дифференциальных уравнений.
Для специалистов в области математической физики и вычислительной математики, интересующихся вопросами качественного анализа дискретных уравнений, а также для аспирантов и студентов соответствующих специальностей.