В книге систематически развиваются методы построения непрерывных
групп симметрии квазилинейных дифференциальных уравнений в частных
производных. Исследование ведется для групп с коммутирующими и
антикоммутирующими параметрами и без предположения линейности
группы преобразований. Доказаны теоремы, позволяющие эффективно
разыскивать максимальные в смысле С. Ли группы симметрии и строить
инвариантные дифференциальные уравнения.
Приложение общих результатов сконцентрировано в области анализа групп симметрии релятивистских полей. Систематически исследуются взаимодействующие поля спина 0, 1/2 и
1. Обнаружены существенно нелинейные спинорные и скалярные уравнения, допускающие бесконечные группы, а также конформно инвариантные уравнения нового типа. Для простейшей суперсимметричной модели получены новые сохраняющиеся спинорные заряды. Изучен новый класс вращательно-инвариантных уравнений, для которого обнаружено значительное расширение исходной группы симметрии.
Книга адресована физикам, математикам и механикам, интересующимся теоретико-групповыми методами в теории поля и в механике сплошной среды, а также студентам и аспирантам, прослушавшим вводный курс теории групп.
Приложение общих результатов сконцентрировано в области анализа групп симметрии релятивистских полей. Систематически исследуются взаимодействующие поля спина 0, 1/2 и
1. Обнаружены существенно нелинейные спинорные и скалярные уравнения, допускающие бесконечные группы, а также конформно инвариантные уравнения нового типа. Для простейшей суперсимметричной модели получены новые сохраняющиеся спинорные заряды. Изучен новый класс вращательно-инвариантных уравнений, для которого обнаружено значительное расширение исходной группы симметрии.
Книга адресована физикам, математикам и механикам, интересующимся теоретико-групповыми методами в теории поля и в механике сплошной среды, а также студентам и аспирантам, прослушавшим вводный курс теории групп.