Математическая физика
Математика
  • формат djvu
  • размер 4.92 МБ
  • добавлен 02 ноября 2010 г.
Расулов М.Л. Метод контурного интеграла и его применение к исследованию задач для дифференциальных уравнений
М.: Наука, 1964. - 464 с.
Монография состоит из двух частей. Первая посвящена изложению разработанного автором вычетного метода и его применению к решению широких классов задач дифференциальных уравнений, не поддающихся решению известными способами. Во второй части дается новый метод, названный методом контурного интеграла, в применении к исследованию весьма общих линейных смешанных задач дифференциальных уравнений.
Похожие разделы
Смотрите также

Боголюбов А.Н., Кравцов В.В. Задачи по математической физике

  • формат djvu
  • размер 2.05 МБ
  • добавлен 19 мая 2009 г.
Учебное пособие. М.: Издательство МГУ, 1998 г. 350 стр. , ISBN 5-211-03373-6 В учебном пособии рассматриваются основные методы решения краевых и начально-краевых задач для линейных дифференциальных уравнений в частных производных второго порядка. Рассматриваются метод разделения переменных, метод интегрального преобразования Фурье, метод отражения, метод распространяющихся волн и др. Приводятся минимальные теоретические сведения, используемые пр...

Боголюбов А.Н., Кравцов В.В. Задачи по математической физике

  • формат pdf
  • размер 14.7 МБ
  • добавлен 23 ноября 2011 г.
М.: Изд-во МГУ, 1998. - 350 с. В учебном пособии рассматриваются основные методы решения краевых и начально-краевых задач для линейных дифференциальных уравнений в частных производных второго порядка. Рассматриваются метод разделения переменных, метод интегрального преобразования Фурье, метод отражения, метод распространяющихся волн и др. Приводятся минимальные теоретические сведения, используемые при решении задач этими методами. Даются подробн...

Егоров Ю.В. Лекции по уравнениям с частными производными. Дополнительные главы

  • формат djvu
  • размер 2.32 МБ
  • добавлен 08 марта 2011 г.
М.: Издательство Московского университета, 1985. - 168 с. Книга представляет собой краткое введение в современную общую теорию линейных дифференциальных уравнений с частными производными. Рассмотрены темы: современное доказательство теоремы С. В. Ковалевской, теория обобщенных функций и теория дифференциальных уравнений с постоянными коэффициентами, свойства функций из пространств Соболева, теория краевых задач для эллиптических уравнений произво...

Емельянов В.М., Рыбакина Е.А. Уравнения математической физики. Практикум по решению задач

  • формат pdf
  • размер 21.14 МБ
  • добавлен 10 ноября 2011 г.
Санкт-Петербург: Лань, 2008. - 224 с. Сборник задач предназначен для практических занятий по уравнениям математической физики. В нем рассматриваются основные виды задач, возникающих при изучении дифференциальных уравнений в частных производных, и методы их решения. Каждый раздел содержит теоретическое введение, несколько задач с решениями, которые иллюстрируют применение основных методов, и большой набор задач для самостоятельной работы студенто...

Жукова Г.С., Чечеткина Е.М. Уравнения в частных производных: примеры, задачи, методы решения

  • формат djv
  • размер 796.05 КБ
  • добавлен 11 января 2011 г.
Изложены наиболее часто используемые методы решения начальных, граничных и смешанных задач для дифференциальных уравнений в частных производных. Приведено большое число примеров с полным анализом и решением. Даны примеры для самостоятельного решения. Рекомендуется студентам и преподавателям вузов. Учебно-методическое пособие Российского химико-технологического университета им. Д. И. Менделеева, 2003. - 111 с. Оглавление: Простейшие уравнения в...

Зайцев В.Ф., Полянин А.Д. Метод разделения переменных в математической физике

  • формат pdf
  • размер 1.5 МБ
  • добавлен 26 сентября 2011 г.
Спб, РГПУ им. А.И.Герцена, 2009 г., 92 с. Учебное пособие предназначено для студентов, магистрантов и преподавателей и может быть использовано для изучения дисциплин, связанных с решением дифференциальных уравнений в частных производных в самых разнообразных отраслях прикладной науки. Оно также будет полезно при подготовке к семинарам, факультативным занятиями при самостоятельном изучении вопросов данной тематики. Материал книги может быть широко...

Нобл Б. Применение метода Винера-Хопфа для решения дифференциальных уравнений в частных производных

  • формат djvu
  • размер 3 МБ
  • добавлен 12 сентября 2011 г.
В этой книге известный метод Винера-Хопфа, разработанный для решения определенного класса интегральных уравнений, применяется к решению краевых задач для дифференциальных уравнений в частных производных. Рассматриваются примеры из теории электромагнитных волн, акустики, гидродинамики, теории упругости и теории потенциала. Книга может быть использована в качестве практического руководства по применению метода Винера-Хопфа к конкретным задачам.

Псху А.В. Уравнения в частных производных дробного порядка

  • формат djvu
  • размер 1.54 МБ
  • добавлен 29 апреля 2011 г.
М.: Наука, 2005. - 199 с. Монография посвящена основополагающим элементам теории краевых задач для дифференциальных уравнений с частными производными дробного и континуального порядков. Впервые в отечественной литературе проведен анализ корректных постановок и рассмотрены методы решения и исследования основных краевых задач для широкого класса таких уравнений. Изучены задачи для уравнений порядка меньше либо равного единице, диффузионно-волновы...

Решения задач - Параболические дифференциальные уравнения

Контрольная работа
  • формат rtf
  • размер 10.21 МБ
  • добавлен 13 мая 2011 г.
Решения задач - Параболические дифференциальные уравнения Содержание: Общая характеристика параболических дифференциальных уравнений на примере уравнения теплопроводности. Основные определения и конечно-разностные схемы. Решение дифференциальных уравнений параболического типа методом сеток или методом конечных разностей.

Смирнов М.М. Дифференциальные уравнения в частных производных второго порядка

  • формат djvu
  • размер 2.5 МБ
  • добавлен 26 апреля 2011 г.
М.: Наука, 1964. - 104 с. Эта книга является пособием для студентов механико-математического и физико-математического факультетов вечерних и заочных отделений университетов. Она посвящена теории дифференциальных уравнений в частных производных второго порядка - тому разделу математики, который находит чрезвычайно широкое и многообразное применение в механике, физике и технике. В работе дается вывод основных уравнений математической физики и класс...