Математическая физика
Математика
  • формат pdf
  • размер 3.42 МБ
  • добавлен 17 апреля 2009 г.
Косяков Б.П. Introduction to the classical theory of particles and fields
Данное учебное пособие издаётся только на английском языке.
В него входят разделы:
1. Геометрия пространства Минковского
2. Релятивистская механика
3. Электромагнитное поле
4. Решения уравнений Максвелла
5. Лагранжевые формы в электродинамике
6. Самовзаимодействия в электродинамике
7. Лагранжевые формы для теорий размерностей
8. Решения уравнений Янга-Миллса
9. Самовзаимодействия в теориях размерностей
10. Обобщения
11. Математические добавления
Похожие разделы
Смотрите также

Alinhac S. Hyperbolic Partial Differential Equations

  • формат pdf
  • размер 1.56 МБ
  • добавлен 24 декабря 2010 г.
Springer, 2009. - 150 pages. This excellent introduction to hyperbolic differential equations is devoted to linear equations and symmetric systems, as well as conservation laws. The book is divided into two parts. The first, which is intuitive and easy to visualize, includes all aspects of the theory involving vector fields and integral curves; the second describes the wave equation and its perturbations for two- or three-space dimensions. Over...

Copson E.T. Partial Differential Equations

  • формат djvu
  • размер 1.91 МБ
  • добавлен 10 декабря 2010 г.
Cambridge University Press, 1975. - 292 p. In this book, Professor Copson gives a rigorous account of the theory of partial differential equations of the first order and of linear partial differential equations of the second order, using the methods of classical analysis. In spite of the advent of computers and the applications of the methods of functional analysis to the theory of partial differential equations, the classical theory retains its...

Helms L.L. Potential Theory

  • формат pdf
  • размер 12.94 МБ
  • добавлен 19 января 2011 г.
Springer, 2009. - 441 pages. Aimed at graduate students and researchers in mathematics, physics, and engineering, this book presents a clear path from calculus to classical potential theory and beyond, moving the reader into a fertile area of mathematical research as quickly as possible. The author revises and updates material from his classic work, Introduction to Potential Theory (1969), to provide a modern text that introduces all the importa...

Johnson R.S. A Modern Introduction to the Mathematical Theory of Water Waves

  • формат pdf
  • размер 10.05 МБ
  • добавлен 11 декабря 2010 г.
Cambridge University Press, 1997. - 464 p. For over a hundred years, the theory of water waves has been a source of intriguing and often difficult mathematical problems. Virtually every classical mathematical technique appears somewhere within its confines. Beginning with the introduction of the appropriate equations of fluid mechanics, the opening chapters of this text consider the classical problems in linear and nonlinear water-wave theory. T...

Menzel D.H. Mathematical Physics

  • формат pdf
  • размер 29.16 МБ
  • добавлен 02 ноября 2011 г.
Dover Publications, 1961. - 412 pages. Thorough, extremely useful treatment of classical mechanics, electromagnetic theory, and relativity, includes full explanations of function theory, vectors, matrices, dyadics, tensors, partial differential equations, and other advanced mathematical techniques. Nearly 200 problems with answers from many different fields of physics and varying widely in difficulty.

Polchinski J. String Theory (2 Volumes)

  • формат pdf
  • размер 4.38 МБ
  • добавлен 26 января 2011 г.
Cambridge University Press, 2005. - 424, 552 pages. The two volumes that comprise String Theory provide an up-to-date, comprehensive account of string theory. Volume 1 provides a thorough introduction to the bosonic string, based on the Polyakov path integral and conformal field theory. The first four chapters introduce the central ideas of string theory, the tools of conformal field theory, the Polyakov path integral, and the covariant quantiza...

Reed M., Simon B. Methods of Modern Mathematical Physics. Volume 2: Fourier Analysis, Self-Adjointness

  • формат djvu
  • размер 7.1 МБ
  • добавлен 26 июня 2011 г.
Academic Press, 1975. - 361 pages. This volume will serve several purposes: to provide an introduction for graduate students not previously acquainted with the material, to serve as a reference for mathematical physicists already working in the field, and to provide an introduction to various advanced topics which are difficult to understand in the literature. Not all the techniques and application are treated in the same depth. In general, we g...

Shubin M.A. Pseudodifferential Operators and Spectral Theory

  • формат pdf
  • размер 5.3 МБ
  • добавлен 02 ноября 2011 г.
2nd edition, Springer-Verlag Berlin, 2001, 288 pages. This is the second edition of Shubin's classical book. It provides an introduction to the theory of pseudodifferential operators and Fourier integral operators from the very basics. The applications discussed include complex powers of elliptic operators, H?rmander asymptotics of the spectral function and eigenvalues, and methods of approximate spectral projection. Exercises and problems are i...

Stillwell J. Naive Lie Theory

  • формат pdf
  • размер 1.21 МБ
  • добавлен 31 января 2012 г.
Springer, 2008, 218 p. In this new textbook, acclaimed author John Stillwell presents a lucid introduction to Lie theory suitable for junior and senior level undergraduates. In order to achieve this, he focuses on the so-called "classical groups'' that capture the symmetries of real, complex, and quaternion spaces. These symmetry groups may be represented by matrices, which allows them to be studied by elementary methods from calculus and linear...

Zachmanoglou E.C., Thoe D.W. Introduction to Partial Differential Equations with Applications

  • формат djvu
  • размер 4.56 МБ
  • добавлен 15 октября 2011 г.
Dover, 1987. - 432 pages. This introductory text explores the essentials of partial differential equations applied to common problems in engineering and the physical sciences. It reviews calculus and ordinary differential equations, explores integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory and more. Includes problems and answers.