World Scientific Pub, 1994. - 480 Pages.
From Scientific American
"The book is clearly written and should be accessible to readers who have a good undergraduate preparation in mathematics or physics. Each part of the book ends with a list of references that will enable the reader to pursue the material presented in greater detail."
"This book is a great introduction to many of the mode ideas of mathematical physics including differential geometry, group theory, knot theory and topology. It uses as 'physical excuses' to introduce these topics Maxwell theory, Yang-Mills theories and general relativity (including its Ashtekar reformulation). The level of the book is gauged to advanced physics/math undergraduates and graduate students. The style of the book is quite lively and explanations are very clear. The treatment is mathematically and physically self-contained . I would strongly recommend this nicely written book for anyone interested in teaching the contemporary ideas of mathematical physics to an audience of physicists (especially if that audience is interested in particle physics/gravity). It offers an excellent way of treating the subject with mathematical rigor while keeping the physical motivation and usefulness of these mathematical concepts close at hand. For the individual reader, it is a great way to be lured into the study of the mathematics that underlies contemporary theoretical physics.
From Scientific American
"The book is clearly written and should be accessible to readers who have a good undergraduate preparation in mathematics or physics. Each part of the book ends with a list of references that will enable the reader to pursue the material presented in greater detail."
"This book is a great introduction to many of the mode ideas of mathematical physics including differential geometry, group theory, knot theory and topology. It uses as 'physical excuses' to introduce these topics Maxwell theory, Yang-Mills theories and general relativity (including its Ashtekar reformulation). The level of the book is gauged to advanced physics/math undergraduates and graduate students. The style of the book is quite lively and explanations are very clear. The treatment is mathematically and physically self-contained . I would strongly recommend this nicely written book for anyone interested in teaching the contemporary ideas of mathematical physics to an audience of physicists (especially if that audience is interested in particle physics/gravity). It offers an excellent way of treating the subject with mathematical rigor while keeping the physical motivation and usefulness of these mathematical concepts close at hand. For the individual reader, it is a great way to be lured into the study of the mathematics that underlies contemporary theoretical physics.