Математическая физика
Математика
  • формат pdf
  • размер 1.47 МБ
  • добавлен 20 сентября 2011 г.
Бабич В.М. Метод Зоммерфельда-Малюжинца в теории дифракции
Санкт-Петербург, СПБГУ, 2003 г. - 104 стр.

Содержание:.
Задачи дифракции в угловых областях.
Об уравнении Гельмгольца и краевых условиях на сторонах клина.
Окрестность вершины и условия Мейкснера.
Падение плоской волны на клин и геометро-оптическая часть решения.
Условия излучения и завершение постановки задачи.
Единственность решения задачи дифракции на импедансном клине.
Единственность решения задачи дифракции на идеальном клине.
Теорема единственности и принцип предельного поглощения.
Интегралы Зоммерфельда.
Вводные замечания.
О преобразовании Лапласа.
Представление решений уравнения Гельмгольца интегралами.
Теорема Малюжинца.
Дальнейшие сведения о функции ?(z; ').
Асимптотический анализ интеграла.
О падающей и поверхностных волнах.
О поведении интегралов Зоммерфельда вблизи вершины.
Идеальные краевые условия.
Краевые условия Дирихле.
О поведении решения в дальней зоне.
Краевые условия Неймана.
Задача о клине с излучающей гранью.
Импедансные краевые условия.
Уравнения Малюжинца.
Общая теория уравнений Малюжинца.
Функция Малюжинца и ее основные свойства.
Решение однородных уравнений.
Решение неоднородных уравнений.
Модифицированное преобразование Фурье и S-интегралы.
Непосредственное использование S-интегралов.
Решение функциональных уравнений в задаче Малюжинца.
Дальнее поле.
Клин с тонким покрытием.
Постановка задачи.
Построение точного решения.
Дальнее поле.
Неравномерная асимптотика.
Равномерные формулы.
Внешность клина с полупрозрачным слоем.
Постановка задачи.
Редукция к уравнению второго порядка.
Сведение к интегральному уравнению.
Равномерная асимптотика дифракционного коэффициента.
Вычисление полюсов и вычетов в них.
Равномерная по углу асимптотика дальнего поля.
Численная реализация.
Вычисление спектральных функций.
Пример расчета дальнего поля.
Похожие разделы
Смотрите также

Бабич В.М., Капилевич М.Б., Михлин С.Г. и др. Линейные уравнения математической физики

  • формат djvu
  • размер 1.98 МБ
  • добавлен 28 ноября 2009 г.
М.: Наука, 1964. - 368 с. Настоящая книга посвящена линейным дифференциальным уравнениям математической физики. В этот выпуск включены как весьма конкретные сведения, относящиеся к важным частным задачам математической физики, так и сведения, касающиеся уравнений и задач более общего вида. Наряду с классическими исследованиями затронуты и многие работы последних лет. В справочнике приведены важнейшие результаты по краевым задачам для уравнений и...

Бабич В.М., Капилевич М.Б., Михлин С.Г. и др. Линейные уравнения математической физики

  • формат pdf
  • размер 2.52 МБ
  • добавлен 24 января 2011 г.
М.: Наука, 1964. - 368 с. Настоящая книга посвящена линейным дифференциальным уравнениям математической физики. В этот выпуск включены как весьма конкретные сведения, относящиеся к важным частным задачам математической физики, так и сведения, касающиеся уравнений и задач более общего вида. Наряду с классическими исследованиями затронуты и многие работы последних лет. В справочнике приведены важнейшие результаты по краевым задачам для уравнений и...

Бабич В.М., Кирпичникова Н.Я. Метод пограничного слоя в задачах дифракции

  • формат djvu
  • размер 2.02 МБ
  • добавлен 08 апреля 2011 г.
Издательство Ленинградского университета, Ленинград, 1974. - 126 c. В зтой небольшой книге излагается метод пограничного слоя - весьма универсальный метод, позволяющий находить коротковолновую асимптотику решений многих дифракционных задач. Книга рассчитана на специалистов-теоретиков, работающих в области теории дифракции акустических, электромагнитных и других волн, и на математиков, интересующихся асимптотическими методами математической физи...

Дифракция плоской акустической волны на сфере с мягким покрытием

  • формат doc
  • размер 161.51 КБ
  • добавлен 09 мая 2011 г.
Тулгу. 4 курс. математическое моделирование. Задача дифракции акустической волны на сфере с мягким покрытием. Метод преобразования Лапласа для решения волнового уравнения.

Комаров И.В., Пономарев Л.И., Славянов С.Ю. Сфероидальные и кулоновские сфероидальные функции

  • формат djvu
  • размер 3.08 МБ
  • добавлен 14 мая 2011 г.
Под ред. Булдырева В. С. – М.: Наука, Гл. ред. физ. -мат. литературы, 1976. –320 с. В книге с единой точки зрения изложены основные результаты работ последних лет по теории и применениям сфероидальных и родственных им кулоновских сфероидальных функций. Кулоновские сфероидальные функции как класс специальных функций последовательно определены и рассмотрены впервые. В книге представлены аналитические свойства сфероидальных и кулоновских сфероидальн...

Лионс Ж.-Л. Некоторые решения нелинейных краевых задач

  • формат djvu
  • размер 5.47 МБ
  • добавлен 04 июля 2011 г.
М.: Мир, 1972, - 588 с. Автор книги — известный французский математик, труды которого уже знакомы читателю (Латтес Р., Лионе Ж.-Л., «Метод квазиобращеиия и его приложения», «Мир», 1970; Лионе Ж.-Л., Мадженес Э., «Неоднородные граничные задачи и их приложения», «Мир», 1971). Его новая монография посвящена некоторым методам решения нелинейных уравнений в частных производных. Эти методы применяются для решения уравнений гидродинамики, теории упругос...

Нобл Б. Применение метода Винера-Хопфа для решения дифференциальных уравнений в частных производных

  • формат djvu
  • размер 3 МБ
  • добавлен 12 сентября 2011 г.
В этой книге известный метод Винера-Хопфа, разработанный для решения определенного класса интегральных уравнений, применяется к решению краевых задач для дифференциальных уравнений в частных производных. Рассматриваются примеры из теории электромагнитных волн, акустики, гидродинамики, теории упругости и теории потенциала. Книга может быть использована в качестве практического руководства по применению метода Винера-Хопфа к конкретным задачам.

Санчес-Паленсия Э. Неоднородные среды и теория колебаний

  • формат djvu
  • размер 4.69 МБ
  • добавлен 24 августа 2011 г.
Перевод с английского В.В. Жикова под редакцией О.А. Олейник, М.: Мир, 1984, - 472 с. Монография французского ученого посвящена теории усреднения уравнений с частными производными, которая используется для описания явлений в резко неоднородных средах, в частности в композитных материалах. В книге наряду с теоретическими вопросами рассмотрены важные конкретные проблемы: усреднение в задачах теории упругости и гидродинамики, в перфорированных среда...

Смирнов М.М. Дифференциальные уравнения в частных производных второго порядка

  • формат djvu
  • размер 2.5 МБ
  • добавлен 26 апреля 2011 г.
М.: Наука, 1964. - 104 с. Эта книга является пособием для студентов механико-математического и физико-математического факультетов вечерних и заочных отделений университетов. Она посвящена теории дифференциальных уравнений в частных производных второго порядка - тому разделу математики, который находит чрезвычайно широкое и многообразное применение в механике, физике и технике. В работе дается вывод основных уравнений математической физики и класс...

Федорюк М.В. Дифференциальные уравнения с частными производными-5

  • формат djvu
  • размер 3.35 МБ
  • добавлен 22 февраля 2011 г.
М.: ВИНИТИ, 1988. Авторы: В. М. Бабич, Н. С. Бахвалов, Б. Р. Вайнберг, А. М. Ильин, В. Ф. Лазуткин, Г. П. Панасгнко, М. В. Федарюк, А. Л. Штарас Оглавление: Уравнения с быстро осциллирующими решениями (М. В. Федорюк) Асимптотическое поведение при t?? решений внешних смешанных задач для гиперболических уравнений и квазиклассика (Б. Р. Вайнберг) Многомерный метод ВКБ или лучевой метод. Его аналоги и обобщения (В. М. Бабич) Квазиклассическая асимпт...