Дискретная математика
Математика
  • формат pdf
  • размер 23.34 МБ
  • добавлен 18 декабря 2010 г.
Vasudev C. Combinatorics and Graph Theory
New Age Publications (Academic), 2007. - 577 Pages.

All definitions and theorems in this text are stated extremely carefully so that students will appreciate the precision of language and rigor needed in mathematical sciences. Proofs are motivated and developed slowly, their steps are all carefully justified. Recursive definitions are explained and used extensively.
Похожие разделы
Смотрите также

Acharjya D.P., Sreekumar. Fundamental Approach to Discrete Mathematics

  • формат pdf
  • размер 10.7 МБ
  • добавлен 05 февраля 2011 г.
New Age International, 2009. - 408 pages. The salient features of this book include: strong coverage of key topics involving recurrence relation, combinatorics, Boolean algebra, graph theory and fuzzy set theory. Algorithms and examples integrated throughout the book to bring clarity to the fundamental concepts. Each concept and definition is followed by thoughtful examples. There is user-friendly and accessible presentation to make learning mor...

Bona M. A Walk Through Combinatorics: An Introduction to Enumeration and Graph Theory

  • формат pdf
  • размер 18.89 МБ
  • добавлен 30 января 2011 г.
World Scientific Publishing Company, 2006. - 492 pages. This is a textbook for an introductory combinatorics course that can take up one or two semesters. An extensive list of problems, ranging from routine exercises to research questions, is included. In each section, there are also exercises that contain material not explicitly discussed in the preceding text, so as to provide instructors with extra choices if they want to shift the emphasis o...

Capobianco M., Moluzzo J.C. Examples and Counterexamples in Graph Theory

  • формат pdf
  • размер 12.91 МБ
  • добавлен 16 марта 2011 г.
North-Holland, 1978. - 270 pages. It is a real pleasure, indeed an honor, for me to have been invited by Mike Capobianco and John Molluzzo to write an introduction to this imaginative and valuable addition to graph theory. Let me therefore present a few of my thoughts on the current status of graph theory and how their work contributes to the field. Graphs have come a long way since 1736 when Leonhard Euler applied a graph-theoretic argument to...

Chartrand G., Lesniak L. Graphs and Digraphs

  • формат djvu
  • размер 2.67 МБ
  • добавлен 26 октября 2011 г.
Издательство Chapman and Hall/CRC Press, 1996, -429 pp. Graph theory is a major area of combinatorics, and during recent decades, graph theory has developed into a major area of mathematics. In addition to its growing interest and importance as a mathematical subject, it has applications to many fields, including computer science and chemistry. As in the first edition of Graphs & Digraphs (M. Behzad, G. Chartrand, L. Lesniak) and the second...

Diestel R. Graph Theory

  • формат djvu
  • размер 2.43 МБ
  • добавлен 01 января 2011 г.
Springer, 2005. - 410 pages. The third edition of this standard textbook of modern graph theory has been carefully revised, updated, and substantially extended. Covering all its major recent developments it can be used both as a reliable textbook for an introductory course and as a graduate text: on each topic it covers all the basic material in full detail, and adds one or two deeper results (again with detailed proofs) to illustrate the more a...

Golumbic M.C., Hartman I.B.-A. Graph Theory, Combinatorics and Algorithms: Interdisciplinary Applications

  • формат pdf
  • размер 10.29 МБ
  • добавлен 12 декабря 2010 г.
Sprіnger, 2005. - 301 pages. Graph Theory, Combinatorics and Algorithms: Interdisciplinary Applications focuses on discrete mathematics and combinatorial algorithms interacting with real world problems in computer science, operations research, applied mathematics and engineering. The book contains eleven chapters written by experts in their respective fields, and covers a wide spectrum of high-interest problems across these discipline domains. A...

Gross J.L., Yellen J. (editors) Handbook of Graph Theory

  • формат pdf
  • размер 9.22 МБ
  • добавлен 01 января 2011 г.
CRC, 2003. - 1192 pages. The Handbook of Graph Theory is the most comprehensive single-source guide to graph theory ever published. Best-selling authors Jonathan Gross and Jay Yellen assembled an outstanding team of experts to contribute overviews of more than 50 of the most significant topics in graph theory-including those related to algorithmic and optimization approaches as well as "pure" graph theory. They then carefully edited the compilat...

Harris J.M., Hirst J.L., Mossinghoff M.J. Combinatorics and Graph Theory

  • формат pdf
  • размер 3.34 МБ
  • добавлен 18 декабря 2010 г.
Springer New York, 2010. - 400 pages. This book covers a wide variety of topics in combinatorics and graph theory. It includes results and problems that cross subdisciplines, emphasizing relationships between different areas of mathematics. In addition, recent results appear in the text, illustrating the fact that mathematics is a living discipline. The second edition includes many new topics and features: (1) New sections in graph theory on di...

Matousek J., Nesetril J. Invitation to Discrete Mathematics

  • формат pdf
  • размер 19.68 МБ
  • добавлен 05 февраля 2011 г.
Oxford University Press, 1998. - 426 pages. Invitation to Discrete Mathematics is at once an introduction and a thoroughly comprehensive textbook for courses in combinatorics and graph theory. It also contains introductory chapters for more specialized courses such as probabilistic methods, applied linear algebra, combinatorial enumeration, and operations research. A lively and entertaining style is combined with rigorous mathematics, and the ma...

Wilf H.S. Generatingfunctionology

  • формат pdf
  • размер 1.54 МБ
  • добавлен 03 июля 2011 г.
A K Peters, 2006. - 245 pages. Generating functions, one of the most important tools in enumerative combinatorics, are a bridge between discrete mathematics and continuous analysis. Generating functions have numerous applications in mathematics, especially in. * Combinatorics. * Probability Theory. * Statistics. * Theory of Markov Chains. * Number Theory. One of the most important and relevant recent applications of combinatorics lies in th...