Учебное пособие. — М. : Изд-во МГТУ им. Н. Э. Баумана, 2010. — 191,
[1] с. : ил. — ISBN 978-5-7038-3372-8.
В книге изложены основные вариационные принципы механики;
демонстрируются приложения принципов к решению многочисленных задач
математической физики. Принципы позволяют поставить задачу в
терминах дифференциальных уравнений, т. е. вывести
соответствующее уравнение и естественные краевые условия. Несмотря на то, что при этом ужесточаются требования к гладкости искомых решений (повышение порядка дифференцируемости в два раза), дифференциальные уравнения Эйлера - Лагранжа во многих
случаях позволяют качественно исследовать свойства экстремалей. Если не удается получить дифференциальное уравнение, которое имеет решение, в арсенале исследователя остается возможность использования так называемых прямых методов. В данной работе продемонстрированы оба подхода. Для студентов и аспирантов, а также преподавателей и специалистов.
соответствующее уравнение и естественные краевые условия. Несмотря на то, что при этом ужесточаются требования к гладкости искомых решений (повышение порядка дифференцируемости в два раза), дифференциальные уравнения Эйлера - Лагранжа во многих
случаях позволяют качественно исследовать свойства экстремалей. Если не удается получить дифференциальное уравнение, которое имеет решение, в арсенале исследователя остается возможность использования так называемых прямых методов. В данной работе продемонстрированы оба подхода. Для студентов и аспирантов, а также преподавателей и специалистов.