Самара, СамГУ, Вестник СамГУ - Естественнонаучная серия, 2008,
№6(65). - 25с.
В статье описана общая схема исследования математических уравнений,
основанная на использовании инвариантов и позволяющая упрощать
алгебраические уравнения и системы, понижать порядок обыкновенных
дифференциальных уравнений (или их интегрировать), а
также получать точные решения нелинейных уравнений математической физики. Построение инвариантов осуществляется путем поиска преобразований, сохраняющих вид рассматриваемых уравнений (при этом не используются понятия и сложный аппарат группового анализа). Приведены многочисленные примеры решения конкретных алгебраических и дифференциальных уравнений. Важно отметить, что применение простейших преобразований сдвига и масштабирования (и их комбинаций) позволяет единообразно описать разрешимых (или допускающих понижение порядка) обыкновенных дифференциальных уравнений значительно больше, чем описано в классических и специальных учебниках. При использовании указанного простого метода надо
уметь решать лишь самые простые алгебраические уравнения и системы и уметь дифференцировать. Последнее обстоятельство говорит о целесообразности введения данного метода в стандартные курсы лекций по обыкновенным дифференциальным уравнениям и уравнениям математической физики, которые читаются студентам, специализирующимся в области прикладной математики, физики и механики (этот
метод с успехом можно включать также в соответствующие специальные курсы, читаемые в некоторых технических и педагогических вузах).
также получать точные решения нелинейных уравнений математической физики. Построение инвариантов осуществляется путем поиска преобразований, сохраняющих вид рассматриваемых уравнений (при этом не используются понятия и сложный аппарат группового анализа). Приведены многочисленные примеры решения конкретных алгебраических и дифференциальных уравнений. Важно отметить, что применение простейших преобразований сдвига и масштабирования (и их комбинаций) позволяет единообразно описать разрешимых (или допускающих понижение порядка) обыкновенных дифференциальных уравнений значительно больше, чем описано в классических и специальных учебниках. При использовании указанного простого метода надо
уметь решать лишь самые простые алгебраические уравнения и системы и уметь дифференцировать. Последнее обстоятельство говорит о целесообразности введения данного метода в стандартные курсы лекций по обыкновенным дифференциальным уравнениям и уравнениям математической физики, которые читаются студентам, специализирующимся в области прикладной математики, физики и механики (этот
метод с успехом можно включать также в соответствующие специальные курсы, читаемые в некоторых технических и педагогических вузах).