Дискретная математика
Математика
  • формат djvu
  • размер 4.5 МБ
  • добавлен 28 октября 2011 г.
Papadimitriou C.M. Computational Complexity
Издательство Addison-Wesley, 1994, -540 pp.
This book is an introduction to the theory of computational complexity at a level appropriate for a beginning graduate or advanced undergraduate course. Computational complexity is the area of computer science that contemplates the reasons why some problems are so hard to solve by computers. This field, virtually non-existent only 20 years ago, has expanded tremendously and now comprises a major part of the research activity in theoretical computer science. No book on complexity can be comprehensive now-certainly this one is not. It only contains results which I felt I could present clearly and relatively simply, and which I consider central to my point of view of complexity.
At the risk of burdening the reader so early with a message that will be heard rather frequently and loudly throughout the book's twenty chapters, my point of view is this: I see complexity as the intricate and exquisite interplay between computation (complexity classes) and applications (that is, problems). Completeness results are obviously central to this approach. So is logic, a most important application that happens to excel in expressing and capturing computation. Computation, problems, and logic are thus the three main currents that run through the book. .
Part I: Algorithms.
Problems and Algorithms.
Turing machines.
Computability.
Part II: Logic.
Boolean logic.
First-order logic.
Undecidability in logic.
Part III: P and NP.
Relations between complexity classes.
Reductions and completeness.
NP-complete problems.
coNP and function problems.
Randomized computation.
Cryptography.
Approximability.
On P vs. NP.
Part IV: Inside P.
Parallel computation.
Logarithmic space.
Part V: Beyond NP.
The polynomial hierarchy.
Computation that counts.
Polynomial space.
A glimpse beyond.
Похожие разделы
Смотрите также

Buss S. Circuit Complexity and Computational Complexity

Статья
  • формат pdf
  • размер 573.37 КБ
  • добавлен 24 октября 2011 г.
University of California, 1992, -154 pp. These lecture notes were written for a topics course in the Mathematics Department at the University of California, San Diego during the winter and spring quarters of 1992. Introduction to circuit complexity. Theorems of Shannon and Lupanov giving upper and lower bounds of circuit complexity of almost all Boolean functions. Spira's theorem relating depth and formula size. Khrapchenko's lower bound on formu...

Chikalov I. Average Time Complexity of Decision Trees

  • формат pdf
  • размер 975.04 КБ
  • добавлен 09 ноября 2011 г.
Издательство Springer, 2011, -114 pp. The monograph is devoted to theoretical and experimental study of decision trees with a focus on minimizing the average time complexity. The study resulted in upper and lower bounds on the minimum average time complexity of decision trees for identification problems. Previously known bounds from information theory are extended to the case of identification problem with an arbitrary set of attributes. Some ex...

Edelsbrunner H. Algorithms in Combinatorial Geometry

  • формат djvu
  • размер 4.52 МБ
  • добавлен 15 октября 2011 г.
Издательство Springer, 1987, -439 pp. Computational geometry as an area of research in its own right emerged in the early seventies of this century. Right from the beginning, it was obvious that strong connections of various kinds exist to questions studied in the considerably older field of combinatorial geometry. For example, the combinatorial structure of a geometric problem usually decides which algorithmic method solves the problem most eff...

Jukna S. Boolean Function Complexity. Advances and Frontiers

  • формат pdf
  • размер 2.98 МБ
  • добавлен 24 октября 2011 г.
Издательство Springer, 2011, -633 pp. Boolean circuit complexity is the combinatorics of computer science and involves many intriguing problems that are easy to state and explain, even for the layman. This book is a comprehensive description of basic lower bound arguments, covering many of the gems of this complexity Waterloo that have been discovered over the past several decades, right up to results from the last year or two. Many open problems...

Lamagna E.A. The Complexity of Monotone Functions

Дисертация
  • формат pdf
  • размер 1.24 МБ
  • добавлен 15 декабря 2011 г.
Диссертация, Brown University, 1975, -110 pp. An important open question in the field of computational complexity is the development of nontrivial lower bounds on the number of logical operations required to compute switching functions. Two important measures of functional complexity are combinational complexity, corresponding to the minimal number of operations in any computational chain (straight-line algorithm or feedback-free network) for th...

Paterson M.S. (ed.) Boolean Function Complexity

  • формат djvu
  • размер 1.16 МБ
  • добавлен 28 октября 2011 г.
Издательство Cambridge University Press, 1992, -211 pp. Complexity theory attempts to understand and measure the intrinsic difficulty of computational tasks. The study of Boolean Function Complexity reaches for the combinatorial origins of these difficulties. The field was pioneered in the 1950's by Shannon, Lupanov and others, and has developed now into one of the most vigorous and challenging areas of theoretical computer science. In July 1990...

Rosen K.H., Michaels J.G. et al. Handbook of Discrete and Combinatorial Mathematics

  • формат djvu
  • размер 8.11 МБ
  • добавлен 31 января 2012 г.
Crc press, 2000. - 1183 pages. The Handbook of Discrete and Combinatorial Mathematics is the first book presenting a comprehensive collection of reference material for the essential areas of discrete mathematics as well as for important applications to computer science and engineering. Topics include logic and foundations, counting, number theory, abstract and linear algebra, probability, graph theory, networks and optimization, cryptography and...

Savage J.E. Models of Computation. Exploring the Power of Computing

  • формат pdf
  • размер 4.2 МБ
  • добавлен 28 октября 2011 г.
Издательство Addison-Wesley, 1998, -699 pp. Theoretical computer science treats any computational subject for which a good model can be created. Research on formal models of computation was initiated in the 1930s and 1940s by Turing, Post, Kleene, Church, and others. In the 1950s and 1960s programming languages, language translators, and operating systems were under development and therefore became both the subject and basis for a great deal of...

Singh A. Elements of Computation Theory

  • формат pdf
  • размер 4.5 МБ
  • добавлен 08 декабря 2011 г.
Издательство Springer, 2009, -428 pp. The foundation of computer science is built upon the following questions: What is an algorithm? What can be computed and what cannot be computed? What does it mean for a function to be computable? How does computational power depend upon programming constructs? Which algorithms can be considered feasible? For more than 70 years, computer scientists are searching for answers to such questions. Their inge...

Vollmer H. Introduction to Circuit Complexity. A Uniform Approach

  • формат pdf
  • размер 7.78 МБ
  • добавлен 31 января 2012 г.
Издательство Springer, 1995, -287 pp. This introductory textbook presents an algorithmic and computability based approach to circuit complexity. Intertwined with the consideration of practical examples and the design of efficient circuits for these, a lot of care is spent on the formal development of the computation model of uniform circuit families and the motivation of the complexity classes defined in this model. Boolean circuits gain much of...