Л.: Гос. изд-во технико-теоретической литературы, 1950. — 86 с.
Настоящий второй выпуск серии «Геометрия Лобачевского и развитие ее идей» содержит две статьи, посвященные применению неевклидовой геометрии в механике и физике. Обе статьи были написаны еще до второй мировой войны (они должны были, по первоначальному замыслу, сопровождать сочинения Лобачевского); несмотря на это, они сохранили интерес и актуальность до сих пор.
Первая статья ныне покойного профессора А. П. Котельникова содержит изложение основ механики неевклидова пространства. Математический аппарат, при помощи которого строятся основы механики евклидова пространства, опирается на теорию векторов; для установления тех же начал механики в неевклидовом пространстве потребовалась специальная векторная алгебра, которая и была разработана А. П. Котельниковым в его труде «Проективная теория векторов» в 1899 году. Чрезвычайно интересно, что ход развития этой теории привел к идеям, оказавшимся плодотворными для геометрии не только неевклидова, но и евклидова пространства. Эти идеи отчетливо выяснены в статье А. П. Котельникова.
Вторая статья, принадлежащая академику В. А. Фоку, очень интересна в том отношении, что она выявляет, как разнообразны вопросы современной физики, в которых находит применения геометрия Лобачевского; более того, в этой статье освещаются те стороны физической реальности, для которых геометрия Евклида является недостаточной.
Настоящий второй выпуск серии «Геометрия Лобачевского и развитие ее идей» содержит две статьи, посвященные применению неевклидовой геометрии в механике и физике. Обе статьи были написаны еще до второй мировой войны (они должны были, по первоначальному замыслу, сопровождать сочинения Лобачевского); несмотря на это, они сохранили интерес и актуальность до сих пор.
Первая статья ныне покойного профессора А. П. Котельникова содержит изложение основ механики неевклидова пространства. Математический аппарат, при помощи которого строятся основы механики евклидова пространства, опирается на теорию векторов; для установления тех же начал механики в неевклидовом пространстве потребовалась специальная векторная алгебра, которая и была разработана А. П. Котельниковым в его труде «Проективная теория векторов» в 1899 году. Чрезвычайно интересно, что ход развития этой теории привел к идеям, оказавшимся плодотворными для геометрии не только неевклидова, но и евклидова пространства. Эти идеи отчетливо выяснены в статье А. П. Котельникова.
Вторая статья, принадлежащая академику В. А. Фоку, очень интересна в том отношении, что она выявляет, как разнообразны вопросы современной физики, в которых находит применения геометрия Лобачевского; более того, в этой статье освещаются те стороны физической реальности, для которых геометрия Евклида является недостаточной.