М.: «Наука», 1978.
Авторы: И. Г. Башмакова, Б. В. Гнеденко,
3. А. Кузичева, Ф. А. Медведев, Е. П. Ожигова, А. Н. Паршин, А. Н. Рудаков, Е. И. Славутин, О. Б. Шейнин, А. П. Юшкевич.
Предлагаемый вниманию читателей коллективный труд «Математика XIX века», за которым последует «Математика XX века», служит продолжением трехтомной «Истории математики с древнейших времен до начала XIX столетия», опубликованной в 1970—1972 гг. Развитие математики рассматривается не только как процесс создания все более совершенных понятий и приемов для изучения пространственных форм и количественных отношений действительного мира, но и как социальный процесс. Математические структуры, раз возникнув, способны совершенствоваться далее в известной степени самостоятельно, но такое имманентное саморазвитие математики само обусловливается практической деятельностью и определяется либо непосредственно, либо, чаще всего, в конечном итоге потребностями общества. Исходя из этого, авторы ставят своей задачей, с одной стороны, установить движущие силы прогресса математики и с этой целью исследуют ее взаимодействие с общественным базисом, техникой, естественными науками, философией. С другой стороны, анализируя собственный ход событий в математике, авторы стремятся выявить связи между различными ее разделами и оценить достижения науки с позиций ее теперешнего состояния и ближайших перспектив.
Оглавление:
Математическая логика.
Алгебра и алгебраическая теория чисел.
Проблемы теории чисел.
Теория вероятностей.
Авторы: И. Г. Башмакова, Б. В. Гнеденко,
3. А. Кузичева, Ф. А. Медведев, Е. П. Ожигова, А. Н. Паршин, А. Н. Рудаков, Е. И. Славутин, О. Б. Шейнин, А. П. Юшкевич.
Предлагаемый вниманию читателей коллективный труд «Математика XIX века», за которым последует «Математика XX века», служит продолжением трехтомной «Истории математики с древнейших времен до начала XIX столетия», опубликованной в 1970—1972 гг. Развитие математики рассматривается не только как процесс создания все более совершенных понятий и приемов для изучения пространственных форм и количественных отношений действительного мира, но и как социальный процесс. Математические структуры, раз возникнув, способны совершенствоваться далее в известной степени самостоятельно, но такое имманентное саморазвитие математики само обусловливается практической деятельностью и определяется либо непосредственно, либо, чаще всего, в конечном итоге потребностями общества. Исходя из этого, авторы ставят своей задачей, с одной стороны, установить движущие силы прогресса математики и с этой целью исследуют ее взаимодействие с общественным базисом, техникой, естественными науками, философией. С другой стороны, анализируя собственный ход событий в математике, авторы стремятся выявить связи между различными ее разделами и оценить достижения науки с позиций ее теперешнего состояния и ближайших перспектив.
Оглавление:
Математическая логика.
Алгебра и алгебраическая теория чисел.
Проблемы теории чисел.
Теория вероятностей.