Дискретная математика
Математика
  • формат pdf
  • размер 1.99 МБ
  • добавлен 05 декабря 2011 г.
Kaski P., ?sterg?rd P.R.J. Classification Algorithms for Codes and Designs
Издательство Springer, 2006, -413 pp.

The history of classifying combinatorial objects is as old as the history of the objects themselves. In the mid-19th century, Kirkman, Steiner, and others became the fathers of mode combinatorics, and their work – on various objects, including (what became later known as) Steiner triple systems – led to several classification results. Almost a century earlier, in 1782, Euler [180] published some results on classifying small Latin squares, but for the first few steps in this direction one should actually go at least as far back as ancient Greece and the proof that there are exactly five Platonic solids.
One of the most remarkable achievements in the early, pre-computer era is the classification of the Steiner triple systems of order 15, quoted above. An onerous task that, today, no sensible person would attempt by hand calculation. Because, with the exception of occasional parameters for which combinatorial arguments are effective (often to prove nonexistence or uniqueness), classification in general is about algorithms and computation.
The approach of using computers to obtain mathematical results used to be controversial – and still is, in some circles – but has grown into an invaluable tool in many areas of contemporary mathematics. Notably, in the recent decades we have, for example, seen computer-aided solutions of two challenging problems: the four-color theorem and the nonexistence of a projective plane of order
10. As a matter of fact, the latter result is surveyed in Chap. 12.
Looking back at the history again, the reader may contemplate whether the tedious calculations by Mr. Cole should be trusted more than a computer search. The results in [129] are correct; a verification of this result published in 1955 was among the first scientific computations when computers became available to researchers [247]. In the past there are many examples of manual calculations that have later been corrected in a computer search. Note, however, that the results on Steiner triple systems of order 15 in a paper published by Fisher [189] in 1940, occasionally claimed to be erroneous (incomplete, with one design missing), were never meant to form a complete classification, a fact that a careful reading of the paper reveals. Certainly, correctness of computational results is of central importance and will be discussed separately in the main text.
Mr. Cole and his co-authors found (all) 80 Steiner triple systems of order
15. But when are two objects different? This question is here answered through a proper definition (and motivation) of the concepts of equivalence and isomorphism for the objects considered.
Among the vast number of combinatorial objects, there is an idea behind the choice of classifying codes and designs and objects closely related to these. Namely, they can all be viewed as some sort of incidence structures, whereas, on the other hand, graphs, which are not considered from a classification perspective, are adjacency structures. The same applies to algebraic objects such as groups.
In studying this book, Chaps. 2, 3, and 4 are essential. Chapter 2 treats the foundations of the combinatorial objects considered; Chap. 3 the concepts of isomorphism, representations, and symmetry; and Chap. 4 presents the generic algorithms for classifying combinatorial objects. Chapter 5 contains several algorithms for solving subproblems in the classification of the objects discussed later. This chapter may be omitted unless one wants to implement these particular algorithms (but it may also be studied separately by anyone who wants to get an insight into contemporary algorithms for several important hard problems). Chapters 6 to 8 contain specific results for, respectively, designs, codes, and related structures. There is some dependency between these chapters, but hardly any overlapping. Constructions of objects with prescribed automorphism groups are studied in Chap. 9, validity of computational results is addressed in Chap. 10, and complexity issues are considered in Chap.
11. Finally, the celebrated nonexistence proof for projective planes of order 10 is surveyed in Chap. 12.
This book serves several different audiences. We have attempted to completely cover all important classification results in the areas of the book, and hope that researchers will find it an invaluable reference showing the state of the art. In fact, some of the results presented were obtained during the very process of writing this text. Most notably, these include a classification of the Steiner triple systems of order 19, the next open case after order 15, and a classification of the Steiner quadruple systems of order 16.
Due to its multidisciplinary nature, the book can be used as course material for graduate courses in computer science and discrete mathematics, as well as in coding theory (and selectively even for undergraduate courses). Elementary background knowledge in group theory will make the book more accessible, but it has been our intention to make the book as self-contained as possible.
Anyone wanting to implement classification algorithms (for any conceivable objects) will here find a basis for such work. Further research in the area is encouraged by a number of open research problems. Many of these problems are descriptions of new research ideas rather than specific problems that no one has managed to solve so far (although there are problems of this type, too). Whenever classification results are tabulated in the text, there is a smallest open case. Such instances are not explicitly stated as open problems, with a few exceptions where the instances are of greater general interest.
We also hope that the supplementary DVD with its comprehensive lists of combinatorial objects will prove a useful source for those whose main interest is in studying and using the classified objects for various purposes.

Introduction
Graphs, Designs, and Codes
Representations and Isomorphism
Isomorph-Free Exhaustive Generation
Auxiliary Algorithms
Classification of Designs
Classification of Codes
Classification of Related Structures
Prescribing Automorphism Groups
Validity of Computational Results
Computational Complexity
Nonexistence of Projective Planes of Order 10
Похожие разделы
Смотрите также

Betten (etc.) Error-Correcting Linear Codes. Classification by Isometry and Applications

  • формат pdf
  • размер 6.67 МБ
  • добавлен 05 декабря 2011 г.
Издательство Springer, 2006, -818 pp. The fascinating theory of error-correcting codes is a rather new addition to the list of mathematical disciplines. It grew out of the need to communicate information electronically, and is currently no more than 60 years old. Being an applied discipline by definition, a surprisingly large number of pure mathematical areas tie into Coding Theory. If one were to name just the most important connections, one wo...

Cameron P.J. Combinatorics - Topics, Techniques, Algorithms

  • формат djvu
  • размер 4.17 МБ
  • добавлен 04 октября 2011 г.
Издательство Cambridge University Press, 1995, -355 pp. If anything at all can be deduced from the two quotations at the top of this page, perhaps it is this: Combinatorics is an essential part of the human spirit; but it is a difficult subject foi the abstract, axiomatising Bourbaki school of mathematics to comprehend. Nevertheless, the advent of computers and electronic communications have made it a more important subject than ever. . This is a...

Huffman W.C., Pless V. Fundamentals of Error-Correcting Codes

  • формат pdf
  • размер 7.87 МБ
  • добавлен 26 октября 2011 г.
Издательство Cambridge University Press, 2003, -665 pp. Coding theory originated with the 1948 publication of the paper A mathematical theory of communication by Claude Shannon. For the past half century, coding theory has grown into a discipline intersecting mathematics and engineering with applications to almost every area of communication such as satellite and cellular telephone transmission, compact disc recording, and data storage. During t...

Kreher D.L., Stinson D.R. Combinatorial Algorithms. Generation, Enumeration and Search

  • формат djvu
  • размер 3.59 МБ
  • добавлен 04 октября 2011 г.
Издательство CRC Press, 1999, -340 pp. Our objective in writing this book was to produce a general, introductory textbook on the subject of combinatorial algorithms. Several textbooks on combinatorial algorithms were written in the 1970s, and are now out-of-date. More recent books on algorithms have either been general textbooks, or books on specialized topics, such as graph algorithms to name one example. We felt that a new textbook on combinat...

Lin S., Costello D. Error Control Coding Fundamentals and Applications

  • формат pdf
  • размер 5.8 МБ
  • добавлен 28 октября 2011 г.
Издательство Prentice-Hall, 1983, -624 pp. This book owes its beginnings to the pioneering work of Claude Shannon in 1948 on achieving reliable communication over a noisy transmission channel. Shannon's central theme was that if the signaling rate of the system is less than the channel capacity, reliable communication can be achieved if one chooses proper encoding and decoding techniques. The design of good codes and of efficient decoding method...

Lins S. Gems, Computers and Attractors for 3-Manifolds

  • формат djvu
  • размер 4.72 МБ
  • добавлен 16 мая 2011 г.
World Scientific Publishing Company, 1995. - 450 Pages. This text provides a guide to dealing with 3-manifolds by computers. Its emphasis is on presenting algorithms which are used for solving (in practice) the homeomorphism problem for the smallest of these objects. The key concept is the 3-gem, a special kind of edge-colored graph, which encodes the manifold via a ball complex. Passages between 3-gems and more standard presentations like Heega...

Nebe G., Rains E.M., Sloane N.J.A. Self-Dual Codes and Invariant Theory

  • формат pdf
  • размер 3.11 МБ
  • добавлен 30 ноября 2011 г.
Издательство Springer, 2006, -447 pp. This book has two goals. On the one hand it develops a completely new unifying theory of self-dual codes that enables us to prove a far-reaching generalization of Gleason’s theorem on weight enumerators of self-dual codes. On the other hand it is an encyclopedia that gives a very extensive list of Types of self-dual codes and their properties—the associated Clifford-Weil groups and their invariants, in parti...

Pretzel O. Error-Correcting Codes and Finite Fields

  • формат djvu
  • размер 13.06 МБ
  • добавлен 28 октября 2011 г.
Издательство Clarendon Press, 1992, -205 pp. This book arose out of a series of courses given to students of mathematics and electrical engineering at Imperial College. The theory of error-correcting block codes combines mathematical elegance and practical utility to an unusual degree. Thus, the intention of the courses was twofold. On the one hand I wished to introduce the mathematicians to some attractive practical problems and to address,thes...

Rosen K.H., Michaels J.G. et al. Handbook of Discrete and Combinatorial Mathematics

  • формат djvu
  • размер 8.11 МБ
  • добавлен 31 января 2012 г.
Crc press, 2000. - 1183 pages. The Handbook of Discrete and Combinatorial Mathematics is the first book presenting a comprehensive collection of reference material for the essential areas of discrete mathematics as well as for important applications to computer science and engineering. Topics include logic and foundations, counting, number theory, abstract and linear algebra, probability, graph theory, networks and optimization, cryptography and...

Van Lint J.H., Wilson R.M. A Course in Combinatorics

  • формат djvu
  • размер 3.48 МБ
  • добавлен 19 марта 2011 г.
Cambridge University, 1993. - 538 pages. This major textbook, a product of many years' teaching, will appeal to all teachers of combinatorics who appreciate the breadth and depth of the subject. The authors exploit the fact that combinatorics requires comparatively little technical background to provide not only a standard introduction but also a view of some contemporary problems. All of the 36 chapters are in bite-size portions; they cover a g...