178 стр.
Приведены типовые расчёты из раздела Интегралы. По указанному разделу освещены теоретические вопросы.
Понятие первообразной функции. Теоремы о первообразных.
Неопределенный интеграл, его свойства.
Таблица неопределенных интегралов.
Замена переменной и интегрирование по частям и неопределенном интеграле.
Разложение дробной рациональной функции на простейшие дроби.
Интегрирование простейших дробей. Интегрирование рациональных функций.
Интегрирование выражений, содержащих тригонометрические функции.
Интегрирование иррациональных выражений.
Понятие определенного интеграла, его геометрический смысл.
Основные свойства определенного интеграла.
Теорема о среднем.
Замена переменной и интегрирование по частям в определенном интеграле.
Интегрирование биномиальных дифференциалов.
Вычисление площадей плоских фигур.
Определение и вычисление длины кривой, дифференциал длины дуги кривой.
По этому разделу приведены теоретические упражнения, расчетные задания.
Найти неопределенные интегралы.
Вычислить определенные интегралы.
Вычислить площади фигур, ограниченных линиями, заданными уравнениями.
Вычислить длины дуг кривых, заданных уравнениями в прямоугольной системе координат.
Вычислить длины дуг кривых, заданных параметрическими уравнениями.
Вычислить длины дуг кривых, заданных уравнениями в полярных координатах.
Вычислить объемы тел, ограниченных поверхностями.
Приведены примеры решения задач из задачника Кузнецова по этому разделу.
Раздел дополнен решениями задач 2010-2011 гг, проверенными ведущими преподавателями Московских ВУЗов.
Приведены типовые расчёты из раздела Интегралы. По указанному разделу освещены теоретические вопросы.
Понятие первообразной функции. Теоремы о первообразных.
Неопределенный интеграл, его свойства.
Таблица неопределенных интегралов.
Замена переменной и интегрирование по частям и неопределенном интеграле.
Разложение дробной рациональной функции на простейшие дроби.
Интегрирование простейших дробей. Интегрирование рациональных функций.
Интегрирование выражений, содержащих тригонометрические функции.
Интегрирование иррациональных выражений.
Понятие определенного интеграла, его геометрический смысл.
Основные свойства определенного интеграла.
Теорема о среднем.
Замена переменной и интегрирование по частям в определенном интеграле.
Интегрирование биномиальных дифференциалов.
Вычисление площадей плоских фигур.
Определение и вычисление длины кривой, дифференциал длины дуги кривой.
По этому разделу приведены теоретические упражнения, расчетные задания.
Найти неопределенные интегралы.
Вычислить определенные интегралы.
Вычислить площади фигур, ограниченных линиями, заданными уравнениями.
Вычислить длины дуг кривых, заданных уравнениями в прямоугольной системе координат.
Вычислить длины дуг кривых, заданных параметрическими уравнениями.
Вычислить длины дуг кривых, заданных уравнениями в полярных координатах.
Вычислить объемы тел, ограниченных поверхностями.
Приведены примеры решения задач из задачника Кузнецова по этому разделу.
Раздел дополнен решениями задач 2010-2011 гг, проверенными ведущими преподавателями Московских ВУЗов.