CRC, 2009. - 304 pages.
Exploring iterative operator-splitting methods, this work describes the analysis of numerical methods for evolution equations based on temporal and spatial decomposition methods. It generalizes the numerical analysis with respect to the consistency and stability to nonlinear, stiff, and spatial decomposed splitting problems. The book focuses on parabolic and hyperbolic equations, including convection-diffusion-reaction, heat, and wave equations, and applies the results to computational science issues, such as flow problems, elastic-wave propagation, heat transfer, and micromagnetic problems. Software tools are listed in an appendix.
Exploring iterative operator-splitting methods, this work describes the analysis of numerical methods for evolution equations based on temporal and spatial decomposition methods. It generalizes the numerical analysis with respect to the consistency and stability to nonlinear, stiff, and spatial decomposed splitting problems. The book focuses on parabolic and hyperbolic equations, including convection-diffusion-reaction, heat, and wave equations, and applies the results to computational science issues, such as flow problems, elastic-wave propagation, heat transfer, and micromagnetic problems. Software tools are listed in an appendix.