Учебное пособие для вузов. — СПб.: Политехника, 2003. — 476 с.: ил.
— ISBN 5-7325-0766-3, ISBN 5-7325-0769-8.
Предлагаемое учебное пособие содержит краткий теоретический
материал по тензорному исчислению, численным методам высшего
анализа и решения дифференциальных уравнений в частных производных,
линейному и динамическому программированию, теории вероятностей и
математической статистике, случайным функциям, теории массового
обслуживания и теории оптимизации, а также большое количество
примеров, иллюстрирующих основные методы решения.
Элементы тензорного исчисления.
Некоторые сведения о векторах.
Определение ортогонального тензора второго ранга.
Операции над тензорами.
Функции вектора.
Фундаментальный тензор Символы Кристоффеля.
Численные методы высшего анализа.
Действия с приближенными числами.
Методы решения алгебраических и трансцендентных уравнений.
Решение системы двух уравнений.
Интерполирование функций.
Численное дифференцирование функций.
Вычисление определенных интегралов.
Численное интегрирование обыкновенных дифференциальных уравнений.
Метод коллокаций.
Численные методы решения дифференциальных уравнений в частных производных.
Конечно-разностный метод (метод сеток).
Дифференциально-разностный метод (метод прямых).
Метод характеристик численного решения гиперболических систем квазилинейных уравнений.
Метод конечных элементов.
Линейное и динамическое программирование.
Решение системы линейных неравенств.
Основная задача линейного программирования и геометрическая реализация ее в случае двух и трех переменных.
Симплекс - метод.
Табличный алгоритм отыскания оптимального решения.
Транспортная задача.
Задачи динамического программирования.
Элементы теории вероятностей. Случайные события.
Основные понятия теории вероятностей.
Алгебра событий.
Теорема сложения вероятностей несовместных событий.
Теорема умножения вероятностей.
Следствия теорем сложения и умножения.
Формула Бернулли Биномиальное распределение вероятностей.
Наивероятнейшее число появлений события.
Локальная теорема Лапласа Формула Пуассона.
Интегральная теорема Лапласа.
Случайная величина и её числовые характеристики.
Дискретная случайная величина и ее распределение.
Математическое ожидание и его свойства.
Дисперсия и среднее квадратическое отклонение.
Закон больших чисел.
Начальные и центральные моменты.
Простейший поток событий.
Непрерывные случайные величины и их числовые характеристики.
Функция распределения вероятностей случайных величин.
Функции случайных аргументов.
Системы случайных величин.
Условные законы распределения вероятностей составляющих системы.
Числовые характеристики системы двух случайных величин.
Элементы математической статистики.
Основные понятия математической статистики.
Средние значения признака совокупности.
Дисперсия и среднеквадратическое отклонение.
Мода и медиана.
Доверительные интервалы для средних. Выборочный метод.
Моменты, асимметрия и эксцесс.
Условные варианты. Метод расчета сводных характеристик выборки.
Элементы теории корреляции.
Статистическая проверка статистических гипотез.
Основные понятия.
Сравнения двух дисперсий нормальных генеральных совокупностей.
Сравнение двух средних генеральных совокупностей.
Сравнение предполагаемой вероятности с наблюдаемой относительной частотой появления события.
Сравнение нескольких дисперсий нормальных генеральных совокупностей.
Проверка гипотезы о нормальном распределении генеральной совокупности.
Проверка гипотез о других законах распределения генеральной совокупности.
Проверка гипотезы о значимости выборочного коэффициента корреляции.
Однофакторный дисперсионный анализ.
Разыгрывание дискретной случайной величины.
Метод Монте-Карло (статистических испытаний).
Разыгрывание непрерывной случайной величины.
Оценка погрешности метода Монте-Карло.
Вычисление определенных интегралов методом.
Монте-Карло.
Случайные функции.
Случайные функции и их характеристики.
Производная и интеграл случайной функции.
Стационарные случайные функции и их характеристики.
Корреляционная функция производной и интеграла стационарной случайной функции.
Теория массового обслуживания.
Основные понятия системы массового обслуживания (СМО).
Определение цепи Маркова Матрица перехода.
Непрерывные марковские цепи. Уравнения Колмогорова для вероятностей состояния.
Универсальные марковские цепи.
Одноканальная и многоканальная СМО с отказами.
Одноканальная СМО с ожиданием.
Многоканальная СМО с ожиданием.
СМО с ограниченным временем ожидания.
Замкнутые системы СМО.
СМО со "взаимопомощью" между каналами.
Элементы теории оптимизации.
Оптимизация планирования комплекса работ.
Оптимизация размещения узлов почтовой связи.
Расчет оптимального числа работников на предприятии.
Задача нахождения кратчайшего пути.
Алгоритмы определения максимального потока.
Задача замены оборудования.
Метод наименьших квадратов.
Методы расчета надежности.
Литература.
Приложение .
Некоторые сведения о векторах.
Определение ортогонального тензора второго ранга.
Операции над тензорами.
Функции вектора.
Фундаментальный тензор Символы Кристоффеля.
Численные методы высшего анализа.
Действия с приближенными числами.
Методы решения алгебраических и трансцендентных уравнений.
Решение системы двух уравнений.
Интерполирование функций.
Численное дифференцирование функций.
Вычисление определенных интегралов.
Численное интегрирование обыкновенных дифференциальных уравнений.
Метод коллокаций.
Численные методы решения дифференциальных уравнений в частных производных.
Конечно-разностный метод (метод сеток).
Дифференциально-разностный метод (метод прямых).
Метод характеристик численного решения гиперболических систем квазилинейных уравнений.
Метод конечных элементов.
Линейное и динамическое программирование.
Решение системы линейных неравенств.
Основная задача линейного программирования и геометрическая реализация ее в случае двух и трех переменных.
Симплекс - метод.
Табличный алгоритм отыскания оптимального решения.
Транспортная задача.
Задачи динамического программирования.
Элементы теории вероятностей. Случайные события.
Основные понятия теории вероятностей.
Алгебра событий.
Теорема сложения вероятностей несовместных событий.
Теорема умножения вероятностей.
Следствия теорем сложения и умножения.
Формула Бернулли Биномиальное распределение вероятностей.
Наивероятнейшее число появлений события.
Локальная теорема Лапласа Формула Пуассона.
Интегральная теорема Лапласа.
Случайная величина и её числовые характеристики.
Дискретная случайная величина и ее распределение.
Математическое ожидание и его свойства.
Дисперсия и среднее квадратическое отклонение.
Закон больших чисел.
Начальные и центральные моменты.
Простейший поток событий.
Непрерывные случайные величины и их числовые характеристики.
Функция распределения вероятностей случайных величин.
Функции случайных аргументов.
Системы случайных величин.
Условные законы распределения вероятностей составляющих системы.
Числовые характеристики системы двух случайных величин.
Элементы математической статистики.
Основные понятия математической статистики.
Средние значения признака совокупности.
Дисперсия и среднеквадратическое отклонение.
Мода и медиана.
Доверительные интервалы для средних. Выборочный метод.
Моменты, асимметрия и эксцесс.
Условные варианты. Метод расчета сводных характеристик выборки.
Элементы теории корреляции.
Статистическая проверка статистических гипотез.
Основные понятия.
Сравнения двух дисперсий нормальных генеральных совокупностей.
Сравнение двух средних генеральных совокупностей.
Сравнение предполагаемой вероятности с наблюдаемой относительной частотой появления события.
Сравнение нескольких дисперсий нормальных генеральных совокупностей.
Проверка гипотезы о нормальном распределении генеральной совокупности.
Проверка гипотез о других законах распределения генеральной совокупности.
Проверка гипотезы о значимости выборочного коэффициента корреляции.
Однофакторный дисперсионный анализ.
Разыгрывание дискретной случайной величины.
Метод Монте-Карло (статистических испытаний).
Разыгрывание непрерывной случайной величины.
Оценка погрешности метода Монте-Карло.
Вычисление определенных интегралов методом.
Монте-Карло.
Случайные функции.
Случайные функции и их характеристики.
Производная и интеграл случайной функции.
Стационарные случайные функции и их характеристики.
Корреляционная функция производной и интеграла стационарной случайной функции.
Теория массового обслуживания.
Основные понятия системы массового обслуживания (СМО).
Определение цепи Маркова Матрица перехода.
Непрерывные марковские цепи. Уравнения Колмогорова для вероятностей состояния.
Универсальные марковские цепи.
Одноканальная и многоканальная СМО с отказами.
Одноканальная СМО с ожиданием.
Многоканальная СМО с ожиданием.
СМО с ограниченным временем ожидания.
Замкнутые системы СМО.
СМО со "взаимопомощью" между каналами.
Элементы теории оптимизации.
Оптимизация планирования комплекса работ.
Оптимизация размещения узлов почтовой связи.
Расчет оптимального числа работников на предприятии.
Задача нахождения кратчайшего пути.
Алгоритмы определения максимального потока.
Задача замены оборудования.
Метод наименьших квадратов.
Методы расчета надежности.
Литература.
Приложение .