CRC Press, 2003, Pages: 535
Specifically developed for food engineers, this is an in-depth reference book that focuses on transport phenomena in food preservation. First it reviews the fundamental concepts regarding momentum, heat, and mass transfer. Then the book examines specific applications of these concepts into a variety of traditional and novel processes and products. Written by an inteational panel of researchers, Transport Phenomena in Food Processing provides a comprehensive, up-to-date assessment of the engineering principles key to improving food processing conditions and energy resources use.
This book presents the state of the art in the transport phenomena area as applied to food preservation and transformation. It is divided into four sections containing a total of 33 chapters, each written by prestigious scientists from institutions and universities around the world. The first section reviews the fundamental concepts of mass, heat, and momentum transfer, while the remaining three sections discuss specific applications for a large variety of processes and products where the predominant transfer phenomenon is mass or heat, or processes employing more than
one transport mechanism.
The mass transfer section focuses on phenomena controlling osmotic dehydration and hot-air drying processes. However, the themes related to water transfer in superficial films placed on foods, and pre-evaporation, ultrasound, and spinning cone columns are also included. The seven chapters that constitute the heat transfer section study the effects of product shape and process equipment on the phenomenon’s efficiency. The chapters in the last section deal with the study of the combination of two or three transfer phenomena in frying, sterilization, and drying processes.
Specifically developed for food engineers, this is an in-depth reference book that focuses on transport phenomena in food preservation. First it reviews the fundamental concepts regarding momentum, heat, and mass transfer. Then the book examines specific applications of these concepts into a variety of traditional and novel processes and products. Written by an inteational panel of researchers, Transport Phenomena in Food Processing provides a comprehensive, up-to-date assessment of the engineering principles key to improving food processing conditions and energy resources use.
This book presents the state of the art in the transport phenomena area as applied to food preservation and transformation. It is divided into four sections containing a total of 33 chapters, each written by prestigious scientists from institutions and universities around the world. The first section reviews the fundamental concepts of mass, heat, and momentum transfer, while the remaining three sections discuss specific applications for a large variety of processes and products where the predominant transfer phenomenon is mass or heat, or processes employing more than
one transport mechanism.
The mass transfer section focuses on phenomena controlling osmotic dehydration and hot-air drying processes. However, the themes related to water transfer in superficial films placed on foods, and pre-evaporation, ultrasound, and spinning cone columns are also included. The seven chapters that constitute the heat transfer section study the effects of product shape and process equipment on the phenomenon’s efficiency. The chapters in the last section deal with the study of the combination of two or three transfer phenomena in frying, sterilization, and drying processes.