144 Modelling Methods
[173] J. R. Chasnov, Simulation of the inertial-conductive subrange, Phys. Fluids A
3, 1164–1168 (1991).
[174] J. R. Chasnov, The viscous–convective subrange in nonstationary turbulence,
Phys. Fluids 10, 1191–1205 (1998).
[175] M. Champion, Modelling the effects of combustion on a premixed turbulent
flow: a review, in R. Borghi and S. N. B. Murthy (eds.), Turbulent Reactive
Flows, Vol. 40 of Lecture Notes in Engineering Series (Springer-Verlag, New
York, 1989), pp. 732–753.
[176] A. Mura, V. Robin, M. Champion, and T. Hasegawa, Small scales features
of velocity and scalar fields in turbulent premixed flames, Flow Turbulence
Combust. 82, 339–358 (2009).
[177] A. Mura, K. Tsuboi, and T. Hasegawa, Modelling of the correlation between
velocity and reactive scalar gradients in turbulent premixed flames based on
dns data, Combust. Theory Model. 12, 671–698 (2008).
[178] A. Mura and M. Champion, Relevance of the Bray number in the small
scale modeling of turbulent premixed flames, Combust. Flame 156, 729–733
(2009).
[179] V. Robin, A. Mura, M. Champion, and T. Hasegawa, Accepted for publication
in Combust. Sci. Technol. 182, 449–464 (2010).
[180] V. Robin, M. Champion, and A. Mura, A second order model for turbulent
reactive flows with variable equivalence ratio, Combust. Sci. Technol. 180, 1707–
1732 (2008).
[181] C. Dopazo and E. O’Brien, An approach to the autoignition of a turbulent
mixture, Acta Astron. 1, 1238–1266 (1974).
[182] A. Mura, V. Robin, and M. Champion, Modeling of scalar dissipation in par-
tially premixed turbulent flames, Combust. Flame 149, 217–224 (2007).
[183] M. J. Dunn, A. R. Masri, R. W. Bilger, R. S. Barlow, and G. H. Wang, The
compositional structure of highly turbulent piloted premixed flames issuing
into a hot coflow, Proc. Combust. Inst. 32, 1779–1786 (2009).
[184] V. Bychkov, Velocity of turbulent flamelets with realistic fuel expansion, Phys.
Rev. Lett. 84, 6122–6125 (2000).
[185] V. Akkerman and V. Bychkov, Velocity of weakly turbulent flames of finite
thickness, Combust. Theory Model. 9, 323–351 (2005).
[186] N. Swaminathan and R. W. Grout, Interaction of turbulence and scalar fields
in premixed flames, Phys. Fluids 18, 045102–1-9 (2006).
[187] N. Chakraborty and N. Swaminathan, Influence of the Damk
¨
ohler number
on turbulence scalar interaction in premixed flames. I: Physical insight, Phys.
Fluids 19, 045103–1-10 (2007).
[188] S. H. Kim and H. Pitsch, Scalar gradient and small-scale structure in turbulent
premixed combustion, Phys. Fluids 19, 115104–1-14 (2007).
[189] G. Hartung, J. Hult, C. F. Kaminski, J. W. Rogerson, and N. Swaminathan, Effect
of heat release on turbulence and scalar–turbulence interaction in premixed
combustion, Phys. Fluids 20, 035110–1-16 (2008).
[190] T. Mantel, A transport equation for the scalar dissipation in reacting flows with
variable density: first results, in Annual Research Briefs (Center for Turbulence
Research, Stanford University, Stanford, CA, 1993).
[191] N. Chakraborty, J. W. Rogerson, and N. Swaminathan, A priori assessment of
closures for scalar dissipation rate transport in turbulent premixed flames using
direct numerical simulation, Phys. Fluids 20, 045106–1-15 (2008).
[192] N. Chakraborty and N. Swaminathan, Influence of the Damk
¨
ohler number on
turbulence scalar interaction in premixed flames. II: Model development, Phys.
Fluids 19, 045104–1-11 (2007).
[193] N. Chakraborty and N. Swaminathan, Effects of Lewis number on scalar dissi-
pation transport and its modelling in turbulent premixed combustion, Combust.
Sci. Technol. 182, 1201–1240 (2010).