References 141
[110] S. P. R. Muppala, N. K. Aluri, F. Dinkelacker, and A. Leipertz, Development
of an algebraic reaction rate closure for the numerical calculation of turbu-
lent premixed methane, ethylene and propane/air flames for pressures up to
1.0 MPa,Combust. Flame 140, 257–266 (2005).
[111] N. Peters, A spectral closure for premixed turbulent combustion in the flamelet
regime, J. Fluid Mech. 242, 611–629 (1992).
[112] C. Stone and S. Menon, Swirl control of combustion instabilities in a gas turbine
combustor, Proc. Combust. Inst. 29, 155–160 (2002).
[113] D. Q. Nguyen, R. P. Fedkiw, and M. Kang, A boundary condition capturing
method for incompressible flame discontinuities, J. Comput. Phys. 172, 71–98
(2001).
[114] V. Moureau, P. Minot, C. B
´
erat, and H. Pitsch, A ghost-fluid method for large-
eddy simulations of premixed combustion in complex geometries, J. Comput.
Phys. 221, 600–614 (2007).
[115] V. Smiljanovski, V. Moser, and R. Klein, A capturing – tracking hybrid scheme
for deflagration discontinuities, Combust. Theory Model. 1, 183–215 (1997).
[116] U. Maas and S. Pope, Simplifying chemical kinetics: Intrinsic low-dimensional
manifolds in composition space, Combust. Flame 88, 239–264 (1992).
[117] S. H. Lam and D. A. Goussis, The CSP method for simplifying kinetics, Int. J.
Chem. Kinet. 26, 461–486 (1994).
[118] C. Hasse and N. Peters, A two mixture fraction flamelet model applied to split
injections in a DI diesel engine, Proc. Combust. Inst. 30, 2755–2762 (2005).
[119] B. Fiorina, O. Gicquel, L. Vervisch, N. Darabiha, and S. Carpentier, Approxi-
mating the chemical structure of partially premixed and diffusion counterflow
flames using FPI flamelet tabulation, Combust. Flame 140, 147–160 (2005).
[120] Z. Ren and S. B. Pope, The use of slow manifolds in r eactive flows, Combust.
Flame 147, 243–261 (2006).
[121] V. Bykov and U. Maas, The extension of the ILDM concept to reaction–
diffusion manifolds, Combust. Theory Model. 11, 839–862 (2007).
[122] S. Delhaye, L. Somers, J. van Oijen, and L. de Goey, Incorporating unsteady
flow-effects beyond the extinction limit in flamelet-generated manifolds, Proc.
Combust. Inst. 32, 1051–1058 (2009).
[123] C. Felsch, M. Gauding, C. Hasse, S. Vogel, and N. Peters, An extended flamelet
model for multiple injections in DI diesel engines, Proc. Combust. Inst. 32,
2775–2783 (2009).
[124] N. Peters, Laminar flamelet concepts in turbulent combustion, Proc. Combust.
Inst. 21, 1231–1250 (1986).
[125] J. Galpin, A. Naudin, L. Vervisch, C. Angelberger, O. Colin, and P. Domingo,
Large-eddy simulation of a fuel lean premixed turbulent swirl burner, Combust.
Flame 155, 247–266 (2008).
[126] J. Galpin, C. Angelberger, A. Naudin, and L. Vervisch, Large-eddy simulation
of H
2
–air auto-ignition using tabulated detailed chemistry, J. Turbulence 9(13)
(2008). Doi: 10.1080/14685240801953048
[127] A. W. Vreman, B. A. Albrecht, J. A. van Oijen, and R. J. M. Bastiaans, Pre-
mixed and nonpremixed generated manifolds in large-eddy simulation of San-
dia flame D and F, Combust. Flame 153, 394–416 (2008).
[128] H. Pitsch and H. Steiner, Large-eddy simulation of a turbulent piloted
methane/air diffusion flame (Sandia flame D), Phys. Fluids 12, 2541–2554
(2000).
[129] V. Subramanian, P. Domingo, and L. Vervisch, Large eddy simulation of forced
ignition of an annular bluff-body burner, Combust. Flame 157, 579–601 (2010).
[130] S. F. Ahmed, R. Balachandran, T. Marchione, and E. Mastorakos, Spark ignition
of turbulent nonpremixed bluff-body flames, Combust. Flame 151, 366–385
(2007).