vi Contents
2.2 Flame Surface Density and the G Equation 60
2.2.1 Flame Surface Density 61
2.2.2 The G Equation for Laminar and Corrugated Turbulent
Flames 64
2.2.3 Detailed Chemistry Modelling with FSD 68
2.2.4 FSD as a PDF Ingredient 71
2.2.5 Conclusion 74
2.3 Scalar-Dissipation-Rate Approach 74
2.3.1 Interlinks among SDR, FSD, and Mean Reaction Rate 76
2.3.2 Transport Equation for the SDR 77
2.3.3 A Situation of Reference – Non-Reactive Scalars 78
2.3.4 SDR in Premixed Flames and Its Modelling 81
2.3.5 Algebraic Models 97
2.3.6 Predictions of Measurable Quantities 100
2.3.7 LES Modelling for the SDR Approach 101
2.3.8 Final Remarks 102
2.4 Transported Probability Density Function Methods for
Premixed Turbulent Flames 102
2.4.1 Alternative PDF Transport Equations 105
2.4.2 Closures for the Velocity Field 107
2.4.3 Closures for the Scalar Dissipation Rate 108
2.4.4 Reaction and Diffusion Terms 109
2.4.5 Solution Methods 110
2.4.6 Freely Propagating Premixed Turbulent Flames 111
2.4.7 The Impact of Molecular-Mixing Terms 113
2.4.8 Closure of Pressure Terms 114
2.4.9 Premixed Flames at High Reynolds Numbers 121
2.4.10 Partially Premixed Flames 124
2.4.11 Scalar Transport at High Reynolds Numbers 126
2.4.12 Conclusions 130
Appendix 2.A 132
Appendix 2.B 133
Appendix 2.C 134
Appendix 2.D 135
references 135
3 Combustion Instabilities ..............................151
3.1 Instabilities in Flames 151
3.1.1 Flame Instabilities 152
3.1.2 Turbulent Burning, Extinctions, Relights, and Acoustic
Waves 166
3.1.3 Auto-Ignitive Burning 168
3.2 Control Strategies for Combustion Instabilities 173
3.2.1 Energy and Combustion Oscillations 174
3.2.2 Passive Control 176
3.2.3 Tuned Passive Control 187
3.2.4 Active Control 189