Оптимальное управление
Slide 369
'
&
$
%
Адаптивное управление с ИМ (VIII)
Адаптивная схема управления с ИМ – 4
Если A — оператор объекта управления, A
c
— оператор инверсной м одели, а
A
m
— оператор прямой модели, то цепочка предельных переходов при
обучении сетей
y(t) → y(t) → g(t) при t → ∞
осуществляется тогда, когда
A
c
= A
−1
m
= A
−1
.
В результате настройки, проведенной описываемым способом, получается
инверсная модель объекта управления, которая выполняет ф ункцию адаптивного
нейроконтроллера.
Адаптивность этой системы проявляется в том, что для ее структурного синтеза
требуется минимум априорной информации об объекте, кроме того, обе
модели, прямая и инверсная (т.е. нейроконтроллер), подстраиваются
непосредственно в процессе функционирования системы при неконтролируемых
изменениях динамики объекта управления.
Slide 370
'
&
$
%
Адаптивное управление с ИМ (IX)
Адаптивная схема управления с ИМ – 5
Проведенный анализ схемы адаптивного управления с инверсной моделью
показывает, что данная схема представляет безусловный интере с с точки зрения
задач управления движением ЛА, если удастся получить достаточно точные
модели объекта управления — прямую и, особенно, инверсную.
При этом следует учитывать, что динамика о бъекта может меняться резко и
непредсказуемо непосредственно в полете, в частности, из-за отказов
оборудования и повреждений конструкции.
Следовательно, необходимо располагать не только средствами построения
достаточно точных ИМ и ПМ на этапе структурного синтеза системы управления,
но и средствами оперативной корр е ктировки этих моделей непосредственно в
ходе полета.
Ю. В. Тюменцев 185