241
and therefore we can estimate I
5
using the Gronwall inequality. Finally, to estimate I
6
, we
I
l
1+r
>
will use the fact that there exists r?i > 0 such that for all 0 < r\ <
T)\,
p£ is bounded
in
L°°'
2
and its gradient in L
2,2
.
2
Now
T
^
11
IIIIIVT/I
U
» \
l+n
\\\ III
u
<>
sll \\Jr\ /IkllU/r
u
e
\
1+
i\\\ III ue
I
6
'
1
"'''!!?
s/r\ /Il2lll
v
^'l
Hi
and thus 7
6
can be estimated by means of the Gronwall inequality. The proof of Theorem
1 is finished.
References
1] Chae D., Lee J.: On the Regularity of Axisymmetric Solutions to the Navier-Stokes
Equations, (preprint).
2] Galdi G.P.: An Introduction to the Navier-Stokes Initial Boundary Value Problem,
In: Fundamental directions in Mathematical Fluid Mechanics, editors G.P.
Galdi, J.G. Heywood, & R. Ranacher, Birkhauser Verlag (2000).
3] Hardy G.H., Littlewood J.E., Polya G.: Inequalities, Cambridge University Press
(1952).
4] Kozono H., Sohr H.: Remark on uniqueness of weak solutions to the Navier-Stokes
equations, Analysis 16 (1996)
255-271.
5] Ladyzhenskaya O.A.: The mathematical theory of viscous incompressible
flow, Gordon and Breach, New York-London-Paris (1969).
6] Ladyzhenskaya O.A.: On the unique global solvability of the Cauchy prob-
lem for the Navier-Stokes equations in the presence of the axial symmetry,
Zap.
Nauch. Sem. LOMI 7 (1968) 155-177 (in Russian).
7] Leonardi S., Malek J., Necas J., Pokorny M.: On axially symmetric flows in R
3
, ZAA
18 (1999) 639-649.
8] Leray J.: Etude de diverses equations integrates non lineaires et de
quelques
problemes
que pose I'hydrodynamique, J. Math. Pures Appl. IX. Ser. 12 (1933) 1-82.
9] Lions, P.-L.: Mathematical Topics in Fluid Mechanics, Volume I: Incom-
pressible Models, Clarendon Press, Oxford (1996).
[10] Neustupa J., Pokorny, M.: Axisymmetric flow of Navier-Stokes fluid in the whole
space with non-zero angular velocity component, Math. Boh. 126, No. 2 (2001).
2
Actually, we have
1"'J',,
, 6 L
00,2
and its gradient belongs to L
2,2
for some e > 0; but this
information is stronger since the main problems are near r = 0.