chap-06 4/6/2004 17: 23 page 150
150 GEOMETRIC MORPHOMETRICS FOR BIOLOGISTS
the uniform terms also completes the tally of shape variables. The K −3 partial warps
contribute 2K −6 scores; adding the two uniform scores brings the count up to 2K −4.
Using the thin-plate spline to visualize shape change
The combination of the uniform and non-uniform components completely describes any
shape change. The set of partial warp scores (including scores on the uniform component)
can be used in any conventional statistical analysis and, like the coordinates obtained by
GLS, the sum of their squares equals the squared Procrustes distance from the reference.
Moreover, like Bookstein’s shape coordinates, they have the correct degrees of freedom.
Thus we can use partial warps in any statistical procedure, such as regression, and diagram
the results as a deformation.
Interpreting changes depicted by the thin-plate spline
Interpretations should be presented in terms of the total deformation, not by detailing the
separate uniform and non-uniform components (or the more finely subdivided components
of them). Just as we cannot talk about individual landmarks as if they were separately
moved, we cannot talk about components of the total deformation as if they were separate
parts of the whole. It is important to remember that the changes depicted are based on
an interpolation function – we do not actually know what occurs between landmarks. If
we have sparsely sampled some regions of the body, we cannot assume that the spline
provides a realistic picture of their changes; there might be many highly localized changes
that cannot be detected in the absence of closely spaced landmarks. All we can say is that
our data do not require any more localized changes.
We cannot show an example of a biological transformation depicted by the thin-plate
spline until we have results to show, so we will borrow examples from a later chapter
(Chapter 10) to discuss the description of shape change using the thin-plate spline. In
Figure 6.7 we depict the ontogenetic changes in body shape of two species of piranhas:
S. gouldingi (Figure 6.7A), which we used earlier in this chapter, and Pygopristis denticulata
(Figure 6.7B). In both species the head (as a whole) grows less rapidly than the middle of
the body, and the eye grows far more slowly than the head. In neither species does the
shortening of the eye result solely from the generally lower cranial growth rates; rather,
there is an abrupt (and localized) deceleration of growth rates in the orbital region. How-
ever, that does not, by itself, fully account for the apparent contraction of the grid in the
head, especially in S. gouldingi. Part of the relative shortening of the head, supraorbitally,
results from the displacement of the landmark at the epiphyseal bar (landmark 2) towards
the anterior landmark of the eye (landmark 14). Suborbitally, the apparent shortening
of the head results from the displacement of the posterior jaw landmark (landmark 13)
towards the posterior eye landmark (landmark 15), as well as from the more general short-
ening of the snout and eye. These two species also differ in the ontogeny of posterior body
shape. In S. gouldingi, the caudal peduncle (the region bounded by landmarks 6, 7, and
8) appears to contract, but no change appears to be localized there – the posterior body
generally shortens (as does the head). Growth rates appear to decrease, moving posteriorly
from the midbody to the tail. Because the caudal peduncle is the most posterior part of
the body, the growth rates are lowest there. In P. denticulata, growth rates decrease more