52
3M
od
el-based
Con
trol
measured fromAtoO(the origin of theframe), Gyrover’s orientation θ with
respect to the inertial frame, anddefining ψ = θ − α as theangle measured
between the vehicle principalaxis andthe distance vector e .When e =0,
th
er
ei
sn
od
efi
ni
tion
fo
r
θ and ψ .T
hen
th
ef
ollow
ing
equations
ar
eo
btained
˙e = Ru
γ
C
ψ
˙
ψ = − u
α
− S
ψ
u
γ
/e
(3.48)
where C
ψ
:= cos ( ψ ), S
ψ
:= sin ( ψ )and e =0.Moreover, we define ψ =0and
˙
ψ = − u
α
,if e =0.
On the basis of the previous considerations, we arenow ready to ad-
dressthe aforementioned closedloopsteeringprobleminthe following general
terms.
Let the robot system be initially located at anynon-zerodistance from
the inertial frame and assume that all state variablesrequired aredirectly
measurable. Then findasuitable, if any, state feedbackcontrol law[u
α
,u
γ
]
T
whichg
uarant
ees the state
[
e, β − π/2 ,
˙
β ]t
ob
ea
symptotically driven to the
null point[0 , 0 , 0]
T
,whileavoidingany attainmentofthe conditions of β =0
(or β = π )i
na
finitetime.
Proposed Controller
Proposition 2 Consider the system (3.47) with the feedbackcontrol laws u
α
and u
γ
,
u
α
= − k
3
Sgn ( C
ψ
) Sgn ( β − π/2+
˙
β )
u
γ
= − ( k
4
e + u
k
) Sgn ( C
ψ
)
(3.49)
where Sgn , K
3
and k
4
aredefined in Equations (3.50) and (3.51), k
4
is a
po
sitivescalarconstantand
k
4
<k
3
− 1,w
hichc
an be
designed.
Anystate ( e, β − π/2 ,
˙
β )starting fromthe domain D definedby
D = { ( e (0),β(0) − π/2 ,
˙
β (0))| e>0 , 0 <β<π,
( β − π/2)
2
+(β − π/2+
˙
β )
2
/ 2 <π/ 2 ,
e, β,
˙
β ∈ R
1
}
converges to
thep
oint
[0
, 0 , 0]
T
.
Proof: First, let Sgn (.) be asign function described as follows:
Sgn ( x )=
1 ,ifx≥ 0
− 1 ,ifx< 0
(3.50)
Let k
3
> 2beapositivescalarconstant,which can be designedand should
be less then ˙α
mam
.Let
f
1
=
G
m
C
β
+ I
m
C
β
S
β
k
2
3
u
k
=(
2(β − π/2+
˙
β )
+ f
1
) / ( J
m
S
β
k
3
) .
(3.51)