List of Figures XXI
4.7 A learning controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.8 Gyrover: A single-wheel robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.9 Definition of the Gyrover’s system parameters. . . . . . . . . . . . . . . . 97
4.10 The tilt angle β
a
Lean angle β of SVM learning control. . . . . . . 100
4.11 U
1
comparison of the same Human control and SVM learner. . . 1 00
4.12 Curse of dimensionality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 01
4.13 Linear regression M=1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.14 Polynomial degree M=3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.15 Polynomial degree M=10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.16 The RMS error for both training and test sets. . . . . . . . . . . . . . . . 108
4.17 Examples of the unlabelled sample generation, when k = 3. . . . . 110
4.18 Local polynomial fitting for lean angle β . . . . . . . . . . . . . . . . . . . . . 115
4.19 Comparison of U
1
in a set of testing data. . . . . . . . . . . . . . . . . . . . 116
4.20 Human control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.21 The CNN-new model learning control. . . . . . . . . . . . . . . . . . . . . . . 117
5.1 Clustering the data into a small ball with radius r . . . . . . . . . . . . 122
5.2 The local sensitivity coefficients of the first four significance
variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.3 SVM learning control results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.4 Vertical balanced motion by human control, X
(1, 1)
. . . . . . . . . . . . 137
5.5 Control trajectories comparison for X
(1, 1)
. . . . . . . . . . . . . . . . . . . . 137
5.6 Vertical balanced motion by human control, X
(1, 2)
. . . . . . . . . . . . 138
5.7 Control trajectories comparison for X
(1, 2)
. . . . . . . . . . . . . . . . . . . . 138
5.8 Vertical balanced motion by human control, X
(1, 3)
. . . . . . . . . . . . 139
5.9 Control trajectories comparison for X
(1, 3)
. . . . . . . . . . . . . . . . . . . . 139
5.10 Tiltup motion by human control, X
(2, 1)
. . . . . . . . . . . . . . . . . . . . . 140
5.11 Control trajectories comparison for X
(2, 1)
. . . . . . . . . . . . . . . . . . . . 140
5.12 Tiltup motion by human control, X
(2, 2)
. . . . . . . . . . . . . . . . . . . . . 141
5.13 Control trajectories comparison for X
(2, 2)
. . . . . . . . . . . . . . . . . . . . 141
5.14 Tiltup motion by human control, X
(2, 3)
. . . . . . . . . . . . . . . . . . . . . 141
5.15 Control trajectories comparison for X
(2, 3)
. . . . . . . . . . . . . . . . . . . . 142
5.16 Vertical balancing by CNN model, trail #1. . . . . . . . . . . . . . . . . . 143
5.17 Vertical balancing by CNN model, trail #2. . . . . . . . . . . . . . . . . . 143
5.18 Vertical balancing by CNN model, trail #3. . . . . . . . . . . . . . . . . . 144
5.19 Vertical balancing by human operator. . . . . . . . . . . . . . . . . . . . . . . 145
5.20 Tiltup motion by CNN model, trail #1. . . . . . . . . . . . . . . . . . . . . . 146
5.21 Tiltup motion by CNN model, trail #2. . . . . . . . . . . . . . . . . . . . . . 147
5.22 Tiltup motion by human operator.. . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.23 Combined motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.24 Fluctuation in the lean angle made by the tiltup model. . . . . . . . 148
5.25 Tiltup and vertical balanced motion by CNN models. . . . . . . . . . 149
6.1 Switch mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.2 Distributed control mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155