118
Ñ Ó Í ‡ Á ‡ Ú Â Î ¸ Ò Ú ‚ Ó:
()()()AC BC A C B C⋅∨⋅ = ∨∨= [ÚÂÓÂχ 5‡, 5·]
= ⋅∨ ⋅AC BC. [ÚÂÓÂχ 7]
8·. í·ÛÂÚÒfl ‰Ó͇Á‡Ú¸, ˜ÚÓ
()()ACBC∨∨=
()AC∨ ×
× ∨().BC
Ñ Ó Í ‡ Á ‡ Ú Â Î ¸ Ò Ú ‚ Ó:
()( )( )AC BC ABAC BCCC∨∨= ⋅∨⋅∨⋅∨⋅ = [4·]
= ⋅∨⋅∨⋅∨ =()AB AC BC 0 [5]
= ⋅∨⋅∨⋅ =()AB AC BC [2a]
= ⋅⋅ ∨ ∨⋅ ∨⋅ =AB C C AC BC( ) [2·, 5]
= ⋅⋅∨⋅⋅∨⋅∨⋅ =()ABC ABC AC BC [4·]
= ⋅∨∨⋅⋅∨=AC B BC A() ()11 [4·]
= ⋅∨⋅ =()()AC BC [ÚÂÓÂχ 2‡]
= ∨∨()( ).ACBC [ÚÂÓÂχ 5‡, 5·]
ùÚË ÚÂÓÂÏ˚ ·Û‰ÛÚ ‚ ‰‡Î¸ÌÂȯÂÏ ÌÂÓ·ıÓ‰ËÏ˚ ÔË ÔÂÓ·‡-
ÁÓ‚‡ÌËË Îӄ˘ÂÒÍËı ‚˚‡ÊÂÌËÈ.
ÅÛ΂˚ ÙÛÌ͈ËË. îÛÌ͈Ëfl F(x
1
, x
2
,..., x
n
) ̇Á˚‚‡ÂÚÒfl ·Û-
΂ÓÈ
∗
, ÂÒÎË Ó̇ Ú‡Í ÊÂ, Í‡Í Ë Â ‡„ÛÏÂÌÚ˚, ÏÓÊÂÚ ÔËÌËχڸ
ÚÓθÍÓ ‰‚‡ Á̇˜ÂÌËfl: 0 ËÎË 1. èÓ˝ÚÓÏÛ Î˛·‡fl ·Û΂‡ ÙÛÌ͈Ëfl
ÏÓÊÂÚ ·˚Ú¸ Á‡‰‡Ì‡ Ú‡·ÎˈÂÈ Â Á̇˜ÂÌËÈ ‚ Á‡‚ËÒËÏÓÒÚË ÓÚ
Á̇˜ÂÌËÈ ‡„ÛÏÂÌÚÓ‚.
ç‡ÔËÏÂ, ÙÛÌ͈Ëfl F(x
1
, x
2
, x
3
), Á‡‰‡Ì̇fl Ú‡·ÎˈÂÈ 3.4,
ÓÔ‰ÂÎÂ̇ ̇ ‚ÓÒ¸ÏË Ì‡·Ó‡ı. 燷ÓÓÏ Ì‡Á˚‚‡˛ Ú ÒÓ‚ÓÍÛÔ-
ÌÓÒÚ¸ Á̇˜ÂÌËÈ ‡„ÛÏÂÌÚÓ‚ ÙÛÌ͈ËË. îÛÌ͈Ëfl, Á‡‰‡Ì̇fl Ú‡·-
ÎˈÂÈ, ÔËÌËχÂÚ Á̇˜ÂÌËÂ, ‡‚ÌÓ ‰ËÌˈÂ, ̇ ̇·Ó‡ı
(0,0,0; 0,1,0; 0,1,1; 1,1,0), ̇ ÓÒڇθÌ˚ı ̇·Ó‡ı ÙÛÌ͈Ëfl ‡‚̇
ÌÛβ.
è˂‰ÂÌ̇fl ÙÛÌ͈Ëfl ÓÔ‰ÂÎÂ̇ ̇ ‚ÒÂı ̇·Ó‡ı ‡„ÛÏÂÌ-
ÚÓ‚. îÛÌ͈Ëfl, ÍÓÚÓ‡fl ÓÔ‰ÂÎÂ̇ ̇ ‚ÒÂı ̇·Ó‡ı, ̇Á˚‚‡ÂÚ-
Òfl ÔÓÎÌÓÒÚ¸˛ ÓÔ‰ÂÎÂÌÌÓÈ.
ë‚ÓÈÒÚ‚‡ ·Û΂˚ı ÙÛÌ͈ËÈ. 1. ã˛·‡fl ·Û΂‡ ÙÛÌ͈Ëfl
∗
ÑÊÓ‰Ê ÅÛθ Ó‰ËÎÒfl 2 ÌÓfl·fl 1815 „Ó‰‡ ‚ ÓÍÂÒÚÌÓÒÚflı É. ãËÌÍÓθ̇ ‚
ÒÂϸ ÙÂÏÂÓ‚. Ç 1849 „Ó‰Û ÅÛθ ÔÓÎÛ˜‡ÂÚ ‰ÓÎÊÌÓÒÚ¸ ÔÓÙÂÒÒÓ‡ ‚ äÛËÌÁ –
ÍÓÎΉʠ„. äÓÍ (à·̉Ëfl). äÓÏ ‡·ÓÚ ÔÓ ÎÓ„ËÍ ËÁ‚ÂÒÚÂÌ Ò‚ÓËÏË ‡Á-
‡·ÓÚ͇ÏË ‚ ÚÂÓËË ‚ÂÓflÚÌÓÒÚÂÈ. è˯ÂÎ Í ‚˚‚Ó‰Û, ˜ÚÓ ÎÓ„Ë͇ ÌÂÁ‡‚ËÒËχ ÓÚ
χÚÂχÚËÍË Ë ‰ÓÎÊ̇ ÒÓÒÚ‡‚ËÚ¸  ÓÒÌÓ‚Û.