Nanomanufacturing Automation References 945
surfaces by tip induced anodization in atomic force
microscopy, Appl. Phys. Lett. 67, 1295–1297 (1995)
53.3 D.M. Schaefer, R. Reifenberger, A. Patil, R.P. An-
dres: Fabrication of two-dimensional arrays of
nanometer-size clusters with the atomic force mi-
croscope, Appl. Phys. Lett. 66, 1012–1014 (1995)
53.4 T.Junno,K.Deppert,L.Montelius,L.Samuelson:
Controlled manipulation of nanoparticles with an
atomic force microscope, Appl. Phys. Lett. 66(26),
3627–3629 (1995)
53.5 P. Avouris, T. Hertel, R. Martel: Atomic force mi-
croscope tip-induced local oxidation of silicon:
kinetics, mechanism, and nanofabrication, Appl.
Phys. Lett. 71, 285–287 (1997)
53.6 R. Nemutudi, N. Curson, N. Appleyard, D. Ritchie,
G. Jones: Modification of a shallow 2DEG by AFM
lithography, Solid-State Electron. 57/58,967–973
(2001)
53.7 S.J. Ahn, Y.K. Jang, S.A. Kim, H. Lee, H. Lee: AFM
nanolithography on a mixed LB film of hexadecy-
lamine and palmitic acid, Ultramicroscopy 91,171–
176 (2002)
53.8 E. Dubois, J.-L. Bubbendorff: Nanometer scale
lithography on silicon, titanium and PMMA re-
sist using scanning probe microscopy, Solid-State
Electron. 43, 1085–1089 (1999)
53.9 M. Sitti, H. Hashimoto: Tele-nanorobotics using
atomic force microscope, Proc. IEEE Int. Conf. Intell.
Robot. Syst. (Victoria 1998) pp. 1739–1746
53.10 M. Guthold, M.R. Falvo, W.G. Matthews, S. Paulson,
S. Washburn, D.A. Erie, R. Superfine, F.P. Brooks Jr.,
R.M. Taylor II: Controlled manipulation of molecu-
lar samples with the nanomanipulator, IEEE/ASME
Trans. Mechatron. 5(2), 189–198 (2000)
53.11 A.A.G. Requicha, C. Baur, A. Bugacov, B.C. Gazen,
B. Koel, A. Madhukar, T.R. Ramachandran,
R. Resch, P. Will: Nanorobotic assembly of two-
dimensional structures, Proc. IEEE Int. Conf. Robot.
Autom. (Leuven 1998) pp. 3368–3374
53.12 L.T. Hansen, A. Kühle, A.H. Sørensen, J. Bohr,
P.E. Lindelof: A technique for positioning nanopar-
ticles using an atomic force microscope, Nanotech-
nology 9, 337–342 (1998)
53.13 G.Y. Li, N. Xi, M. Yu, W.K. Fung: 3-D nanomanip-
ulation using atomic force microscope, Proc. IEEE
Int. Conf. Robot. Autom. (Taipei 2003)
53.14 G. Li, N. Xi, H. Chen, C. Pomeroy, M. Prokos:
Videolized atomic force microscopy for interactive
nanomanipulation and nanoassembly, IEEE Trans.
Nanotechnol. 4(5), 605–615 (2005)
53.15 G.Li,N.Xi,M.Yu,W.-K.Fung:Develop-
ment of augmented reality system for AFM-based
nanomanipulation, IEEE/ASME Trans. Mechatron.
9(2), 358–365 (2004)
53.16 H.Chen,N.Xi,G.Li:CAD-guidedautomated
nanoassembly using atomic force microscopy-
based nonrobotics, IEEE Trans. Autom. Sci. Eng.
3(3), 208–217 (2006)
53.17 H. Chen, N. Xi, W. Sheng, Y. Chen: General
framework of optimal tool trajectory planning
for free-form surfaces in surface manufacturing,
J. Manuf. Sci. Eng. 127(1), 49–59 (2005)
53.18 J. Zhang, N. Xi, G. Li, H.-Y. Chan, U.C. Wejinya:
Adaptable end effector for atomic force microscopy
based nanomanipulation, IEEE Trans. Nanotech-
nol. 5(6), 628–642 (2006)
53.19 A. Javey, J. Guo, D.B. Farmer, Q. Wang, D. Wang,
R.G.Gordon,M.Lundstrom,H.Dai:Carbonnano-
tube field-effect transistors with integrated ohmic
contacts and high-k gate dielectrics, Nano Lett.
4(3), 447–450 (2004)
53.20 A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker:
Logic circuits with carbon nanotube transistors,
Science 294, 1317–1320 (2001)
53.21 I.A. Levitsky, W.B. Euler: Photoconductivity of
single-walled carbon nanotubes under CW il-
lumination, Appl. Phys. Lett. 83, 1857–1859
(2003)
53.22 L. Liu, Y. Zhang: Multi-wall carbon nanotube as
a new infrared detected material, Sens. Actuators
A 116, 394–397 (2004)
53.23 J.A. Misewich, R. Martel, P. Avouris, J.C. Sang,
S. Heinze, J. Tersoff: Electrically induced optical
emission from a carbon nanotube FET, Science 300,
783–786 (2003)
53.24 L. Valentini, I. Armentano, J.M. Kenny, C. Can-
tanlini, L. Lozzi, S. Santucci: Sensors for sub-ppm
NO
2
gas detection based on carbon nanotube thin
films, Appl. Phys. Lett. 82, 4623–4625 (2003)
53.25 J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline,
S. Peng, K. Cho, H. Dai: Nanotube molecular
wires as chemical sensors, Science 287, 622–625
(2000)
53.26 G.Y.Li,N.Xi,M.Yu,W.K.Fung:Augmentedreality
system for real-time nanomanipulation, Proc. IEEE
Int. Conf. Nanotechnol. (San Francisco 2003)
53.27 L. Liu, Y. Luo, N. Xi, Y. Wang, J. Zhang,
G. Li: Sensor referenced real-time videolization of
atomic force microscopy for nanomanipulations,
IEEE/ASME Trans. Mechatron. 13(1), 76–85 (2008)
53.28 K.W.C. Lai, N. Xi, C.K.M. Fung, J. Zhang, H. Chen,
Y. Luo, U.C. Wejinya: Automated nanomanufactur-
ing system to assemble carbon nanotube based
devices, Int. J. Robot. Res. (IJRR) 28(4), 523–536
(2009)
53.29 K.W.C. Lai, N. Xi, U.C. Wejinya: Automated pro-
cess for selection of carbon nanotube by electronic
property using dielectrophoretic manipulation, J.
Micro-Nano Mechatron. 4(1), 37–48 (2008)
53.30 M.S. Arnold, A.A. Green, J.F. Hulvat, S.I. Stupp,
M.C. Hersam: Sorting carbon nanotubes by elec-
tronic structure using density differentiation, Nat.
Nanotechnol. 1, 60–65 (2006)
53.31 P.G. Collins, M.S. Arnold, P. Avouris: Engineer-
ing carbon nanotubes and nanotube circuits using
electrical breakdown, Science 292, 706–709 (2001)
Part F 53