308 References
[HKM] Hawking, S. W., A. R. King and P. J. McCarthy, “A new topology
for curved spacetime which incorporates the causal, differential and
conformal structures”, J. Math. Phys., 17(1976), 174–181.
[H] Herstein, I. N., Topics in Algebra, Blaisdell, Waltham, MA, 1964.
[IS] Ives, H. E. and G. R. Stilwell, “Experimental study of the rate
of a moving atomic clock”, J. Opt. Soc. Am., 28(1938), 215;
31(1941), 369.
[KO] Klein, A. G. and G. I. Opat, “Observability of 2π rotations: A
proposed experiment”, Phys. Rev. D, 11(1975), 523–528.
[K] Kuiper, N. H., Linear Algebra and Geometry, North Holland,
Amsterdam, 1965.
[La] Lang, S., Linear Algebra, Springer-Verlag, New York, 1987.
[LU] Laporte, O. and G. E. Uhlenbeck, “Application of spinor analysis
to the Maxwell and Dirac equations”, Phys. Rev., 37(1931), 1380–
1397.
[LY] Lee, T. D. and C. N. Yang, “Parity nonconservation and a two-
component theory of the neutrino”, Phys. Rev., 105(1957), 1671–
1675.
[Le] Lenard, A., “A characterization of Lorentz transformations”, Amer.
J. Phys., 19(1978), 157.
[Lest] Lester, J.A., “Separation-preserving transformations of de Sitter
spacetime”, Abh. Math. Sem. Univ. Hamburg Volume 53, Number
1, 217–224.
[M] Magnon, A. M. R., “Existence and observability of spinor struc-
ture”, J. Math. Phys., 28(1987), 1364–1369.
[MTW] Misner, C. W., K. S. Thorne and J. A. Wheeler, Gravitation,W.
H. Freeman, San Francisco, 1973.
[Nan] Nanda, S., “A geometrical proof that causality implies the Lorentz
group”, Math. Proc. Camb. Phil. Soc., 79(1976), 533–536.
[N
1
]Naber,G.L.,Topological Methods in Euclidean Spaces, Dover Pub-
lications, Mineola, New York, 2000
[N
2
]Naber,G.L.,Spacetime and Singularities, Cambridge University
Press, Cambridge, England, 1988.
[N
3
] Naber, G.L., Topology, Geometry and Gauge fields: Foundations,
2
nd
Edition, Springer, New York, 2010.
[N
4
] Naber, G.L., Topology, Geometry and Gauge fields: Interactions,
2
nd
Edition, Springer, New York, 2011.
[Ne] Newman, M. H. A., “On the string problem of Dirac”, J. London
Math. Soc., 17(1942), 173–177.
[O’N] O’Neill, B., Semi-Riemannian Geometry, With Applications to Rel-
ativity, Academic Press, San Diego, New York, 1983.
[Par] Parrott, S., Relativistic Electrodynamics and Differential Geometry,
Springer-Verlag, New York, 1987.
[Pay] Payne, W. T., “Elementary spinor theory”, Amer. J. Phys.,
20(1952), 253–262.