
CONCLUSIONS
ZrO, based oxygen sensors have been proved for a long
time as reliable sensors for engine control systems. For
lean burn engines universal wide range oxygen sensors
in
ZrO,
planar technology are preferred in current series
applications. Temperature independent resistive type
oxygen sensors as presented might be a future
alternative for distinctive applications in lean exhaust
gases and offer high performance for fast lambda
control.
ACKNOWLEDGMENTS
We would like to thank the Institut fir
Kolbenmaschinen of the Universitiit Karlsruhe (TH) for
the measurements on the car engine, and the
Keramikverbund Karlsruhe Stuttgart
(KKS)
of the State
Government of Baden-Wiirttemberg for the financial
support.
REFERENCES
[
11
Bosch: Kraftfahrtechnisches Taschenbuch 23,
Auflage, Vieweg-Verlag
(
1999).
[2]
K.
Antonius, A. Gamer,
S.
Garrett, Honda first to
have gasoline engine verified at ULEV exhaust
levels, Honda Press Release, Jan. (1995).
[3]
K. Winkler, M. Kusell, E. Schnaibel, W. Strehlau,
U.
Gobel, J. Hohne, W. Muller, The Development
of an aftertreatment System for Gasoline Direct
Injection Passenger Cars, F98T2 18, FISITA
World Automotive Congress Proceedings, Sept.
[4] M. Kiisell, W. Moser, M. Philipp, Motronic MED7
for Gasoline Direct Injection Engines: Engine
Management System and Calibration Procedures,
SAE 1999-01-1284, Detroit (1999).
[5]
S.
Sojima and
S.
Mase, Multi-Layered Zirconia
Oxygen Sensor for Lean Bum Engine Application,
SAE 850378, Detroit (1985).
[6] T. Takeuchi, Oxygen Sensors, Sensors and
Actuators, 14, 109-124 (1988).
[7] T. Yamada, N. Hayakawa, Y. Kami, T. Kawai,
Universal Air-Fuel Ratio Heated Exhaust Gas
Oxygen Sensor and Further Applications, SAE
920234, Detroit (1992).
[8] H.-M. Wiedenmann, G. Hotzel, H. Neumann, J.
Riegel, and H. Weyl, Exhaust Gas Sensors, in
Automotive electronics Handbook, edited by
Ronald K. Jurgen, McGraw Hill Inc. (1995).
[9]
J.
Riegel,
G.
Hotzel, H. Neumann, Advanced
Electrochemical Exhaust Gas Sensors for
Automotive Application, Proc. 44" Meeting
of
the
International Society of Electrochemistry, Berlin,
Sept. 5-10 (1993).
Science, Proceedings 1, Westerville, Ohio, 28 1
-
301 (1980).
(1992).
27
-
Oct. 1 (1 998) Paris.
[
101 E.M. Logothetis in Ceramic Engineering
&
[l 11 P.T. Moseley, Sensors and Actuators B 6, 149-156
[
12) K. Park, E.M. Logothetis, J. Electrochem. SOC.:
Solid-state Science and Technology 124 (9),
1443-46 (1977).
[13] C. Yu, Y. Shimizu, H. Arai, Chemistry Letters,
[
141 P.T. Moseley, D.E. Williams, Polyhedron 8
[15] D.E. Williams, B.C. Tofield, P. McGeehin,
European Patent Specification EP0062994 (1 982).
[16] R. E. Mistler, D. J. Shanefield, R. B. Runk, Foil
Casting of Ceramics, in Ceramic Processing before
Firing, edited by
G.
Y. Onada and L. L. Hench,
John Wiley and Sons, Inc., New York ,411-448
(1978).
[
171 H. Neumann, G. Hotzel, G. Lindemann, Advanced
Planar Oxygen Sensors for Future Emission
Control Strategies,
SAE
970459, Detroit (1997).
Electrolyte Oxygen Sensors, Solid State Ionics 6,
563-566 (1986).
(13/14), 1615-18 (1989).
[
181 H. Dietz, Gas-Diffusion-Controlled Solid-
175-183 (1982).
[
191 H.-M. Wiedenmann, Characteristics of Oxygen
Sensors for Lean Exhaust Gas, VDI-Berichte 578,
129- 15 1, VDI-Verlag, Dusseldorf (1 985)
[20] K. Saji, Characteristics of Limiting Current Type
Oxygen Sensors,
J. Electrochem. SOC.:
Electrochemical Science and Technology,
Vo1.134, No.10, Oct. (1987).
[21] K.Mizusawa, K. Katoh,
S.
Hamaguchi, H.
Hayashi,
S.
Hocho, Development of Air Fuel
Ratio Sensor for 1997 Model1 Year LEV Vehicle,
SAE
970843, Detroit (1997).
HZirdtl, Solubility of Lanthanum in Strontium
Titanate in Oxygen-Rich Atmospheres,
J.
Mater.
Sci. 32 4247-52 (1997).
Norby, J. Phys. Chem. Solids 58 (6), 969-76
(1997).
[24] R. Moos, K.H. HZirdtl, J. Am. Ceram. SOC. 80 (lo),
[25] W. Menesklou, H.-J. Schreiner, K.H. Hiirdtl and
E. Ivers-Tiffke, Sensors and Actuators B 5912-3,
[26]
W.
Menesklou, H.-J. Schreiner, R. Moos,
K.
H.
[22] R.
Moos,
T. Bischoff, W. Menesklou,
K.
H.
[23]
S.
Steinsvik, R. Bugge, J. Gjonnes, J. Tafto,
T.
2549-62 (1997).
184- 189 (1 999).
HZirdtl,
E.
Ivers-Tiffke, Sr(Ti,Fe)O,: Materials for
temperature independent resistive oxygen sensors,
be published in
MRS
fall meeting proceedings,
Materials for Smart Systems 111, Volume 604
(1999).
[27] H.-J. Schreiner, Temperaturunabhhgige resistive
Sauerstoffsensoren auf der Basis von Sr(Ti,Fe)O,.
*,
Ph.D. thesis, Karlsruhe (1999).
(1991).
Fortschr.-Ber. VDI 8 (291), Diisseldorf, Ph.D.
thesis
(
1992).
[28] R. Waser, J. Am. Ceram. SOC. 74 [8], 1934-40
[29] Ch. Tragut, Kinetik schneller Sauerstoffsensoren,
[30] Ch. Tragut, K.H. Hiirdtl, Sensors and Actuators B
[3 13 U. Lampe
,
J. Gerblinger, H. Meixner, Sensors and
4,425-429 (1991).
Actuators B 7,787-91 (1992).
44