Chapter 12 Nanoscale Resolution in Far-Field Fluorescence Microscopy 831
microscope reveals structural plasticity of mitochondria in live yeast. Proc.
Natl. Acad. Sci. USA 99, 3370–3375.
Eigen, M. and Rigler, R. (1994). Sorting single molecules: Applications to diag-
nostics and evolutionary biotechnology. Proc. Natl. Acad. Sci. USA 91,
5740–5747.
Elson, E.L. and Rigler, R. Eds. (2001). Fluorescence Correlation Spectroscopy.
Theory and Applications. (Springer, Berlin).
Failla, A.V., Spoeri, U., Albrecht, B., Kroll, A. and Cremer, C. (2002). Nanosiz-
ing of fl uorescent objects by spatially modulated illumination microscopy.
Appl. Opt. 41(34), 7275–7283.
Freimann, R., Pentz, S. and Hörler, H. (1997). Development of a standing-wave
fl uorescence microscope with high nodal plane fl atness. J. Microsc. 187(3),
193–200.
Göpper-Mayer, M. (1931). Über Elementarakte mit zwei Quantensprüngen.
Ann. Phys. (Leipzig) 9, 273–295.
Goodman, J.W. (1968). Introduction to Fourier Optics. (McGraw-Hill, New
York).
Gugel, H., Bewersdorf, J., Jakobs, S., Engelhardt, J., Storz, R. and Hell, S.W.
(2004). Cooperative 4Pi excitation and detection yields 7-fold sharper optical
sections in live cell microscopy. Biophys. J. 87, 4146–4152.
Gustafsson, M.G., Agard, D.A. and Sedat, J.W. (1996). 3D widefi eld microscopy
with two objective lenses: Experimental verifi cation of improved axial reso-
lution. In: Three-Dimensional Microscopy: Image Acquisition and Processing III.
Proc. SPIE.
Gustafsson, M.G.L. (1999). Extended resolution fl uorescence microscopy. Curr.
Opin. Struct. Biol. 9, 627–634.
Gustafsson, M.G.L. (2000). Surpassing the lateral resolution limit by a factor of
two using structured illumination microscopy. J. Microsc. 198(2), 82–87.
Gustafsson, M.G.L., Agard, D.A. and Sedat, J.W. (1995). Sevenfold improve-
ment of axial resolution in 3D widefi eld microscopy using two objective
lenses. Proc. SPIE 2412, 147–156.
Gustafsson, M.G.L., Agard, D.A. and Sedat, J.W. (1999). I5M: 3 widefi eld light
microscopy with better than 100 nm axial resolution. J. Microsc. 195, 10–16.
S.W. (2007). Fluorescence nanoscopy in whole cells by asynchronous
163901.
Dyba, M. and Hell, S.W. (2003). Photostability of a fl uorescent marker under
42(25), 5123–5129.
Hänninen, P. (2002). Beyond the diffraction limit. Nature 419, 802.
Andresen, M., Stiel, A.C., Jakobs, S., Eggeling, C., Schönle, A. and Hell,
11445.
emission depletion microscopy. Nature Biotechno. 21(11), 1303–1304.
Dyba, M., Jakobs, S. and Hell, S.W. (2003). Immunofl uorescence stimulated
fluorescence nanoscopy. Biophys. J. 92, L67–L69.
pulsed excited-state depletion through stimulated emission. Appl. Opt.
localization of photoswitching emitters. Biophys. J. 93, 3285–3290.
Jahn, R., Eggeling, C. and Hell, S.W. (2006). Macromolecular-scale resolution
Egner, A., Jakobs, S. and Hell, S.W. (2002). Fast 100-nm resolution 3D-
Jahn, R., Jakobs, S., Eggeling, C. and Hell, S.W. (2007). Two-colour far-field
Dyba, M. and Hell, S.W. (2002). Focal spots of size 1/23 open up far-fi eld
*Donnert, G., Keller, J., Medda, R., Andrei, M.A., Rizzoli, S.O., Luhrmann, R.,
fl uorescence microscopy at 33 nm axial resolution. Phys. Rev. Lett. 88,
*Donnert, G., Keller, J., Wurm, C.A., Rizzoli, S.O., Westphal, V., Schönle, A.,
in biological fluorescence microscopy. Proc. Natl. Acad. Sci. USA 103, 11440–
*Egner, A., Geisler, C., von Middendorff, C., Bock, H., Wenzel, D., Medda, R.,