11 Wafer Bonding 873
in such technology lies in the fact that heat treatment can cause problems when
different materials are direct bonded due to different thermal expansion coefficients
or thermal budget limits such as found in IC circuitry. Such tools will extend the
range of possible material combinations, and, thus, open the door to new applica-
tions. It will be only a matter of time that all wafer bonding tool vendors provide
such additional features in their product palette.
Acknowledgments We thank Prof. Roger Howe, Prof. Pierre Khuri-Yakub, and Dr. Eric
Perozziello, Stanford University, for many fruitful discussions and their support. We also thank
Dr. Robert Rhoades, Entrepix Inc., Dr. Aaron Partridge, SiTime Corporation, and Dr. Steve Vargo,
ST Systems USA Inc., for valuable feedback on CMP, direct hand bonding, and HF vapor etching,
respectively.
In addition, the authors acknowledge the employees from the bonding tool vendors that pro-
vided technical specifications, feedback, and/or provided photo material for Section 11.8.2. These
are Rob Santilli, from Applied Microengineering Ltd; Paul Maciel, from Optical Associates Inc.;
Kensuke Ide, from Mitsubishi Heavy Industries Ltd.; Garret Oakes and Renae Bellah, from
EV Group Inc.; and Kristin Connors, Jim Hermanowski, and Sabine Radeboldt, from SUSS
MicroTec AG.
References
1. F. Lärmer, A. Schilp: Method for anisotropic etching of silicon, US patent 5501893 (1996)
2. Y. Huang et al.: Fabricating capacitive micromachined ultrasonic transducers with wafer-
bonding technology, J. Microelectromech. Syst. 12, 128–137 (2003)
3. M.W. Messana et al.: Packaging of Large Lateral Deflection MEMS Using a Combination of
Fusion Bonding and Epitaxial Reactor Sealing, to appear in Proceedings Solid-State Sensors,
Actuators, and Microsystems Workshop, June 6–10, 2010, pp. 336–339 (Hilton Head Island,
South Caroline, 2010)
4. S. Li et al.: Fabrication of micronozzles using low-temperature wafer-level bonding with
SU-8, J. Micromech. Microeng. 13, 732–738 (2003)
5. J.A. Dziuban: Bonding in Microsystem Technology, Springer Series in Advanced
Microelectronics (Springer, Heidelberg, 2006)
6. Q.-Y. Tong, U. Gösele: Semiconductor Wafer Bonding: Science and Technology (Wiley,
New York, NY, 1999)
7. M. Alexe, U. Gösele: Wafer Bonding: Applications and Technology (Springer, Berlin, 2004)
8. A. Plößl, G. Kräuter: Wafer direct bonding: Tailoring adhesion between brittle materials,
Mater. Sci. Eng. R25, 1–88 (1999)
9. F. Niklaus, G. Stemme, J.-Q. Lu, R.J. Gutmann: Adhesive wafer bonding, J. Appl. Phys. 99,
1–27 (2006)
10. M.A. Schmidt: Wafer-to-wafer bonding for microstructure formation, Proc. IEEE 86, 1575–
1585 (1998)
11. K.T. Turner: Wafer Bonding: Mechanics-Based Models and Experiments, Doctoral thesis,
MIT (2004)
12. D. Tabor: Macroscopic properties and interatomic forces, Phys. Educ. 10(7), 487–490 (1975)
13. K. Kendall: Adhesion: Molecules and mechanics, Science 263, 1720–1725 (1994)
14. G. Binning et al.: Atomic force microscope, Phys. Rev. Lett. 56, 930–934 (1986)
15. N. Miki, S.M. Spearing: Effect of nanoscale surface roughness on the bonding energy of
direct-bonded silicon wafers, J. Appl. Phys. 94, 6800–6806 (2003)
16. C. Gui et al.: Fusion bonding of rough surfaces with polishing technique for silicon
micromachining, Microsyst. J. Technol. 3(3), 122–128 (1997)
17. W. Kern: Handbook of Semiconductor Wafer Cleaning Technology – Science, Technology,
and Applications (Noyes Publications, Westwood, NJ, 1993)