Г лава
6.
Основы кристаллохимии
339
упаковки (см. рис.
6.376),
атомы
Си
ИЛИ
АГ
образуют трехслойную кубиче-
скую упаковку (см. рис. 6.37а), атомы
La
—
четырехслойную упаковку.
Особенно изящной теория плотнейших упаковок шаров становится
при описании кристаллических структур
с
ионным типом связи.
Это
структуры также
с
ненаправленными
и
ненасыщаемыми связями,
од-
нако
в
ионных структурах приходится иметь дело
с
ионами
не
только
разных зарядов,
но и
разных размеров.
В
этом случае важен
тот
факт,
что плотнейшую упаковку
в них
создают
не
нейтральные атомы,
а
чаще
более крупные
по
размеру отрицательно заряженные частицы
—
анионы
(О
2-
,
F~, CI", S
2
' и
др.), более мелкие катионы оказываются
в
пустотах
этой упаковки.
Следует отметить,
что о
«шарах, касающихся друг друга» можно
го-
ворить лишь
в
случае
с
кристаллами металлических
и
благородно-газо-
вых элементов, считая радиусами таких шаров (атомов) половины рас-
стояний между центрами
их
тяжести.
При
кулоновском взаимодействии
между атомами
в
ионных структурах катион, попав
в
окружение анио-
нов,
не
должен «болтаться»:
он
раздвигает своих соседей, разрежая
тем
самым
их
укладку
(см.
параграф
6.4.2).
Фактически речь
в
этом случае
может идти
не о
плотнейшей упаковке
в
строгом смысле слова,
т. е. не
о максимальном коэффициенте заполнения пространства,
а
лишь
о
рас-
положении центров тяжести более крупных
по
размеру ионов
по
закону
плотнейшей упаковки.
Итак,
с
учетом указанной оговорки принцип плотнейшей упаковки
вполне может быть применен
для
описания структур ионных соедине-
ний. Однако,
для
того чтобы
это
описание было достаточно полным,
не-
обходимо рассмотреть пустоты между шарами
в
плотнейших упаковках.
6.6.5. Пустоты
в
плотнейших упаковках.
Их расположение
и
симметрия
В многослойной модели
из
одинаковых атомов-шаров, пока
мы
рас-
сматриваем один слой, лунки
1 и 2 (см. рис. 6.45)
принципиально
не
отличаются друг
от
друга.
Но как
только накладывается второй слой,
лунки одного типа (например,
2)
оказываются окруженными четырь-
мя соседними шарами,
а
лунки другого типа (например,
1) —
шестью.
Теперь
они
оказываются совершенно разными, поскольку
в
плотноупа-
кованном пространстве образуются
два
типа пустот:
в
первом случае,
соединив центры тяжести четырех шаров, получим тетраэдр — тетра-
эдрическую пустоту (рис. 6.56а,
б), во
втором получим пустоту
в
форме
октаэдра
—
октаэдрическую пустоту (рис. 6.56е,
г). Это
главные пустоты
плотнейшей упаковки; можно говорить
и о
тригональных (треугольных)
пустотах, расположенных
в
самом плотноупакованном слое (рис. 6.56Э),
и несколько условно
—
о
позициях
с КЧ = 2
(рис. 6.56е). Перечисленные