412 14 Time-Dependent Flows
From the initial condition of the considered flow problem, one obtains
τ =0 ; U
∗
(η, 0) = 1 =
∞
n=1
A
n
J
0
(λ
n
η) (14.120)
i.e. no λ
n=0
exists and one thus obtains
U
∗
(η, 0) = 1 = A
1
J
0
(λ, η)+A
2
J
0
(λ
2
η)+···A
n
J
0
(λ
n
η)+··· (14.121)
For determining the constants A
n
one uses a special property of the Bessel
function:
x
#
0
xJ
n
(ax)J
n
(bx)dx =0 whena = b (14.122)
but
x
#
0
xJ
2
n
(ax)dx = 0 i.e. when a = b (14.123)
Table 14.2 Discrete values of Bessel functions of the a second kind
αY
0
(α) Y
1
(α) αY
0
(α) Y
1
(α) αY
0
(α) Y
1
(α)
0.00 −∞ −∞ 5.00 −0.309 +0.148 10.00 +0.058 +0.249
0.20 −1.081 −3.324 5.20 −0.331 +0.079 10.20 +0.006 +0.250
0.40 −0.606 −1.781 5.40 −0.340 +0.010 10.40 −0.044 +0.242
0.60 −0.309 −1.260 5.60 −0.335 +0.057 10.60 −0.090 +0.224
0.80 −0.087 −0.978 5.80 −0.318 −0.119 10.80 −0
.133 +0.197
1.00 +0.088 −0.781 6.00 −0.288 −0.175 11.00 −0.169 +0.164
1.20 +0.228 −0.621 6.20 −0.248 −0.222 11.20 −0.198 +0.124
1.40 +0.338 −0.479 6.40 −0.200 −0.260 11.40 −0.218 +0.081
1.60 +0.420 −0.348 6.60 −0.145 −0.286 11.60 −0.230 +0.035
1.80 +0.477 −0
.224 6.80 −0.086 −0.300 11.80 −0.232 −0.012
2.00 +0.510 −0.107 7.00 −0.026 −0.303 12.00 −0.225 −0.057
2.20 +0.521 +0.002 7.20 +0.034 −0.293 12.20 −0.210 −0.099
2.40 +0.510 +0.101 7.40 +0.091 −0.273 12.40 −0.186 −0.137
2.60 +0.481 +0.188 7.60 +0.142 −0.243 12.60 −
0.155 −0.169
2.80 +0.436 +0.264 7.80 +0.187 −0.204 12.80 −0.119 −0.194
3.00 +0.377 +0.325 8.00 +0.224 −0.158 13.00 −0.078 −0.210
3.20 +0.307 +0.371 8.20 +0.250 −0.107 13.20 −0.035 −0.218
3.40 +0.230 +0.401 8.40 +0.266 −0.054 13.40 +0.009 −0.218
3.60 +0.148 +0.415 8.60 +0.272 +0.001 13.60 +0.
051 −0.208
3.80 +0.645 +0.414 8.80 +0.266 +0.054 13.80 +0.091 −0.191
4.00 −0.017 +0.380 9.00 +0.250 +0.104 14.00 +0.127 −0.167
4.20 −0.094 +0.368 9.20 +0.225 +0.149 14.20 +0.158 −0.136
4.40 −0.163 +0.326 9.40 +0.191 +0.187 14.40 +0.181 −0.100
4.60 −0.224 +0.274 9.60 +0.150 +0.217 14.60 +0.197 −0.061
4.80 −0
.272 +0.214 9.80 +0.105 +0.238 14.80 +0.206 −0.020
5.00 −0.309 +0.148 10.00 +0.058 +0.249 15.00 +0.206 +0.021