Phase Field Approach References 1115
21.18 J.A. Warren, R. Kobayashi, W.C. Carter: Modeling
grain boundaries using a phase-field technique,
J. Cryst. Growth 211, 18–20 (2000)
21.19 T. Miyazaki: Recent developments and the future
of computational science on microstructure forma-
tion, Mater. Trans. 43, 1266–1272 (2002)
21.20 J. Wang, S.-Q. Shi, L.-Q. Chen, Y. Li, T.-Y. Zhang:
Phase-field simulations of ferroelectric/ferroelastic
polarization switching, Acta Mater. 52,749–764
(2004)
21.21 Y.L. Li, S.Y. Hu, Z.K. Liu, L.-Q. Chen: Effect of sub-
strate constraint on the stability and evolution of
ferroelectric domain structures in thin films, Acta
Mater. 50, 395–411 (2002)
21.22 Y.M. Jin, A. Artemev, A.G. Khachaturyan: Three-
dimensional phase field model of low-symmetry
martensitic transformation in polycrystal: Simula-
tion of ζ
2
martensite in AuCd alloys, Acta Mater. 49,
2309–2320 (2001)
21.23 Y.U.Wang,Y.M.Jin,A.M.Cuitino,A.G.Khachatu-
ryan: Nanoscale phase field microelasticity theory
of dislocations: Model and 3D simulations, Acta
Mater. 49, 1847–1857 (2001)
21.24 D. Rodney, Y. Le Bouar, A. Finel: Phase field meth-
ods and dislocations, Acta Mater. 51, 17–30 (2003)
21.25 S.Y. Hu, L.-Q. Chen: A phase-field model for
evolving microstructures with strong elastic inho-
mogeneity, Acta Mater. 49, 1879–1890 (2001)
21.26 Y.U. Wang, Y.M. Jin, A.G. Khachaturyan: Phase field
microelasticity theory and simulation of multiple
voids and cracks in single crystals and polycrystals
under applied stress, J. Appl. Phys. 91, 6435–6451
(2002)
21.27 J.S. Rowlinson: Translation of J.D. van der Waals’
“The thermodynamic theory of capillarity under
the hypothesis of a continuous variation of den-
sity”, J. Stat. Phys. 20, 197–244 (1979)
21.28 W.C. Carter, W.C. Johnson (Eds.): The Selected Works
of J.W. Cahn (Min.Met.Mater.Soc.,Warrendale
1998)
21.29 H.I. Aaronson (Ed.): Phase Transformation (ASM,
Metals Park 1970) p. 497
21.30 C. Kittel, H. Kroemer: Thermal Physics (Freeman,
New York 1980)
21.31 D. Fan, L.-Q. Chen: Topological evolution dur-
ing coupled grain growth and Ostwald ripening
in volume-conserved 2-D two-phase polycrystals,
Acta Mater. 45, 4145–4154 (1997)
21.32 D. Fan, L.-Q. Chen: Possibility of spinodal de-
composition in yttria-partially stabilized zirconia
(ZrO
2
-Y
2
O
3
) system – A theoretical investigation,
J. Am. Ceram. Soc. 78, 1680–1686 (1995)
21.33 N. Saunders, A.P. Miodownik: CALPHAD (Calcula-
tion of Phase Diagrams): A Comprehensive Guide
(Pergamon, New York 1998)
21.34 S.M. Allen, J.W. Cahn: A microscopic theory for an-
tiphase boundary motion and its application to
antiphase domain coarsening, Acta Metall. Mater.
27, 1085–1095 (1979)
21.35 J.J. Eggleston, G.B. McFadden, P.W. Voorhees: A
phase-field model for highly anisotropic interfa-
cial energy, Physica D 150, 91–103 (2001)
21.36 I. Steinbach, F. Pezzolla, B. Nestler, M. Seeselberg,
R. Prieler, G.J. Schmitz, J.L.L. Rezende: A phase field
concept for multiphase systems, Physica D 94,135–
147 (1996)
21.37 A. Khachaturyan: Theory of Structural Transforma-
tions in Solids (Wiley, New York 1983)
21.38 T. Mura: Micromechanics of Defects in Solids,2nd
edn. (Kluwer, Dordrecht 1991)
21.39 L.-Q. Chen, J. Shen: Applications of semi-implicit
Fourier-spectral method to phase field equations,
Comput. Phys. Commun. 108, 147–158 (1998)
21.40 P.H. Leo, J.S. Lowenngrub, H.J. Jou: A diffuse
interface model for microstructural evolution in
elastically stressed solids, Acta Mater. 46, 2113–2130
(1998)
21.41 M.E. Glicksman: Diffusion in Solids (Wiley, New York
2000)
21.42 M. Doi, T. Koyama, T. Kozakai: Experimental and
theoretical investigation of the phase decompo-
sition in ZrO
2
-YO
1.5
system, Proc. Fourth Pac. Rim
Int. Conf. Adv. Mater. Process (PRICM 4), Honolulu
2001, ed. by S. Hanada, Z. Zhong, S.W. Nam, R.N.
Wright (The Japan Institute of Metals, Sendai 2001)
741–744
21.43 K. Otsuka, C.M. Wayman (Eds.): Shape Memory Ma-
terials (Cambridge Univ. Press, Cambridge 1998)
21.44 T. Koyama, H. Onodera: Phase-field simulation of
microstructure changes in Ni
2
MnGa ferromagnetic
alloy under external stress and magnetic fields,
Mater. Trans. JIM 44, 2503–2508 (2003)
21.45 T. Koyama, H. Onodera: Modeling of microstructure
changes in FePt nano-granular thin films using the
phase-field method, Mater. Trans. JIM 44,1523–
1528 (2003)
21.46 Y.K. Takahashi, T. Koyama, M. Ohnuma, T. Ohkubo,
K. Hono: Size dependence of ordering in FePt
nanoparticles, J. Appl. Phys. 95, 2690–2696 (2004)
21.47 A. Hubert, R. Schafer: Magnetic Domains (Springer,
Berlin, Heidelberg 1998)
21.48 H. Kronmüller, M. Fähnle: Micromagnetism and
the Microstructure of Ferromagnetic Solids (Cam-
bridge Univ. Press, Cambridge 2003)
Part E 21