163
÷åíèÿ, à ïðè t = 5t % áîëåå 99%. Ãðàôè÷åñêè ïîñòîÿííàÿ âðåìåíè
t ìîæåò îïðåäåëèòüñÿ êàê èíòåðâàë âðåìåíè íà îñè t îò t = 0 äî
òî÷êè ïåðåñå÷åíèÿ êàñàòåëüíîé ê u
L
(ðèñ. 6.2), â óêàçàííûé ìîìåíò
íàïðÿæåíèå íà u
L
óìåíüøàåòñÿ â å ðàç ïî ñðàâíåíèþ ñ íà÷àëüíûì.
Àíàëèç ïîëó÷åííûõ ðåçóëüòàòîâ ïîêàçûâàåò, ÷òî ïðè íóëåâûõ
íà÷àëüíûõ óñëîâèÿõ â ìîìåíò t = 0
+
èíäóêòèâíîñòü âåäåò ñåáÿ êàê
áåñêîíå÷íî áîëüøîå ñîïðîòèâëåíèå (ðàçðûâ öåïè), à ïðè t = ¥ êàê
áåñêîíå÷íî ìàëîå ñîïðîòèâëåíèå (êîðîòêîå çàìûêàíèå öåïè).
Äëÿ âòîðîãî ñëó÷àÿ ïðèíóæäåííàÿ ñîñòàâëÿþùàÿ òîêà ñîãëàñ-
íî § 3.6
ïð
m
u
iI
t
ãäå
mm
IU
=
+w
, j =
= arctg(wL/R). Ïîñòîÿííàÿ èíòåãðèðîâàíèÿ îïðåäåëÿåòñÿ èç óðàâ-
íåíèÿ
00
LLm
u
iiAI
-+
îòêóäà
sin
m
u
AI
. Ñëåäîâàòåëüíî, çàêîí èçìåíåíèÿ òîêà
â öåïè â ýòîì ñëó÷àå áóäåò
mm
uu
iIIe
t
w+j-jj-j
(6.18)
Íà ðèñ. 6.3 èçîáðàæåíà âðåìåííàÿ çàâèñèìîñòü òîêà (6.18). Íà-
ïðÿæåíèå íà èíäóêòèâíîñòè
( )
( )
sin
sin,
LmL
u
t
mL
u
di
uLU
t
dt
R
Ue
L
-t
w+j-j+p
+
j-j
w
(6.19)
ãäå U
mL
= wLI
m
.
Àíàëèç óðàâíåíèÿ (6.18) ïîêàçûâàåò, ÷òî â ñëó÷àå ïîäêëþ÷åíèÿ
öåïè ê èñòî÷íèêó u(t) â ìîìåíò, êîãäà j
u
= j ± p/2 â ïîñëåäíåé
ìîãóò âîçíèêàòü ñâåðõòîêè. Åñëè ïîñòîÿííàÿ âðåìåíè öåïè t äîñòà-
òî÷íî âåëèêà, òî ñêà÷îê òîêà â íà÷àëüíûé ïåðèîä ìîæåò äîñòèãàòü
i
max
» 2I
m
. Íàïðîòèâ, ïðè âêëþ÷åíèè öåïè â ìîìåíò, êîãäà j
u
= j,
â íåé ñðàçó íàñòóïàåò óñòàíîâèâøèéñÿ ðåæèì. Àíàëîãè÷íàÿ êàðòè-
íà íàáëþäàåòñÿ è ñ íàïðÿæåíèåì íà èíäóêòèâíîñòè (6.19).
 êà÷åñòâå âòîðîãî ïðèìåðà ðàñ÷åòà ðàññìîòðèì ñëó÷àé íåíó-
ëåâûõ íà÷àëüíûõ óñëîâèé â RL-öåïè (ðèñ. 6.4). Ê ìîìåíòó êîì-
ìóòàöèè â äàííîé öåïè áûëà çàïàñåíà ýíåðãèÿ ìàãíèòíîãî ïîëÿ,
ðàâíàÿ W
L
= Li
2
(0
$
)/2, ãäå i(0
$
) = U/(R
0
+ R). Ïîñëå êîììóòà-
öèè â RL-öåïè âîçíèêàåò ïåðåõîäíûé ïðîöåññ, îïèñûâàåìûé
óðàâíåíèåì:
di
LRi
(6.20)
ò. å. i
ïp
= 0. Ðåøàÿ óðàâíåíèå (6.20), íàõîäèì ñ ó÷åòîì (6.13) $
(6.15):
ñâ
iiAeAe