u
1
u
2
|u
1
| ≤ M, |u
2
| ≤ M Q
T
, M = < ∞.
u = u
1
−u
2
u|
t=0
= 0 |u| ≤ 2M Q
T
T < ∞ Q
LT
= {(x, t) : |x| < L, 0 < t ≤ T }
v(x, t) =
4M
L
2
x
2
2
+ a
2
t
.
Σ
LT
Q
LT
v
Σ
LT
v(x, 0) ≥ |u(x, 0)| = 0, x ∈ [−L, L], v(±L, t) ≥ 2M ≥ |u(±L, t)|, t ∈ [0, T ] ,
−v(x, t) ≤ u(x, t) ≤ v(x, t) Σ
LT
v ±u Q
LT
v(x, t) − u(x, t) ≥ 0 v(x, t) + u(x, t) ≥ 0 Q
LT
−v(x, t) ≤ u(x, t) ≤
v(x, t) ∀(x, t) ∈
Q
LT
|u(x, t)| ≤ v(x, t) =
4M
L
2
x
2
2
+ a
2
t
∀(x, t) ∈
Q
LT
.
(x, t) L u(x, t) ≡
0 ∀(x, t) ∈ Q
LT
T = ∞ Q
LT
Q
LT
0
T
0
< ∞
x t Q
T
u
u(x, t) = X(x)T (t).