ε = u(x
0
, t
0
) − M > 0,
v u
v(x, t) = u(x, t) +
ε
2
(2T − t)
T
, (x, t) ∈
Q
T
.
v(x, t) ≤ u(x, t)+ ε ∀(x, t) ∈ Q
T
(x, t) ∈ Σ
T
t = 0
v(x
0
, t
0
) ≥ u(x
0
, t
0
) = ε + M ≥ ε + u(x, t) ≥ ε + v( x, t) − ε = v(x, t).
v
Q
T
(x
1
, t
1
) ∈ Ω × (0, T ]
v(x
1
, t
1
) ≥ v(x
0
, t
0
) ≥ ε + M > ε.
v (x
1
, t
1
)
gradv = 0, ∆v ≤ 0,
∂v
∂t
≥ 0.
f ≤ 0 Q
T
(x
1
, t
1
)
ρ
∂u
∂t
− div(pgradu) + qu − f ( x, t) = ρ
∂v
∂t
− p∆v − (g radp, gradv) + qv − f+
+
ε
2
(
ρ
T
− q
2T − t
1
T
) ≥ qv +
ε
2
(
ρ
T
− q
2T − t
1
T
) ≥ qε
1 −
2T − t
1
2T
+
ερ
2T
> 0.
u Q
∞
T > 0
M
0
= kϕk
C(
Ω)
, M
1
= kgk
C(Γ×[0,T ])
, M = kfk
C(Q
T
)
.