x = cosθ : [0, π] → [−1, 1], v(θ) = P (x),
d
dθ
=
dx
dθ
d
dx
= −sinθ
d
dx
, (4.11a)
d
dx
1 − x
2
dP
dx
+ λP = 0, x ∈ (−1, 1).
C
∞
[−1, 1]
λ = λ
n
≡ n(n + 1), n = 0, 1, 2, ... .
d
dx
1 − x
2
dP
dx
+ n(n + 1)P = 0, x ∈ (−1, 1)
P
n
(x)
P
n
(x)
P
n
(x) =
1
2
n
n!
d
n
dx
n
(x
2
− 1)
n
, n = 0, 1, ... .
P
n
(−x) = (−1)
n
P
n
(x)
{P
n
(x)}
∞
n=0
L
2
(−1, 1)
(P
n
, P
m
) =
1
Z
−1
P
n
(x)P
m
(x)dx =
2
2n+1
, n = m,
0, n 6= m.
P
0
(x) = 1, P
1
(x) = x, P
2
(x) =
1
2
(3x
2
− 1), P
3
(x) =
1
2
(5x
3
− 3x),