{1, cos ϕ, sin ϕ, ..., cos mϕ, sin mϕ, ...}
L
2
(0, 2π) L
2
(−1, 1)
{P
m
n
(x)}
∞
n=m
m ≥ 0
L
2
(S
1
)
{Y
m
n
(θ, ϕ), n = 0, 1, ...; m = 0, ±1, ..., ±n}.
L
2
(S
1
)
g ∈ L
2
(S
1
)
Y
m
n
g(θ, ϕ) =
∞
X
n=0
Y
n
(θ, ϕ) =
∞
X
n=0
n
X
m=−n
c
m
n
Y
m
n
(θ, ϕ),
g L
2
(S
1
) c
m
n
Y
l
k
(θ, ϕ)
S
1
{Y
l
k
}
c
m
n
=
(2n + 1)
2πε
m
(n − |m|)!
(n + |m|)!
π
Z
0
2π
Z
0
g(θ, ϕ)Y
m
n
(θ, ϕ) sin θdθdϕ.
u
n
n S
1
⊂ R
3
n
n u
n
n
∆u
n
= 0 R
3
.
2n+1
u
m
n
n m = 0, ±1, ... , ±n
u
m
n
(r, θ, ϕ) = r
n
Y
m
n
(θ, ϕ), n = 0, 1, ... , |m| ≤ n,