α β γ δ ϕ
0
ϕ
1
(0, l)
ρ, p, p
′
, q [0, l] p(x) ≥ p
0
= const > 0
ρ(x) ≥ ρ
0
= const > 0 q(x) ≥ 0 ∀x ∈ [0, l]
α, β, γ, δ ≥ 0 α + β 6= 0 γ + δ 6= 0
u(x, t) = X(x)T (t).
ρ(x)X(x)T
′′
(t) = T (t)[p(x)X
′
(x)]
′
− q(x)X(x)T (t),
[p(x)X
′
(x)]
′
− q(x)X(x)
ρ(x)X(x)
=
T
′′
(t)
T (t)
.
x
t
λ
T X
T
′′
(t) + λT (t) = 0,
[p(x)X
′
(x)]
′
+ [λρ(x) − q(x)]X(x) = 0.
X
αX(0) − βX
′
(0) = 0, γX(l) + δX
′
(l) = 0.
λ
λ