Ω
x = (x
1
, x
2
, ..., x
n
) R
n
Γ Q
T
= Ω ×(0, T ] Q
T
∂
2
u
∂t
2
= Lu.
L
Lu =
n
X
i,j=1
∂
∂x
i
a
ij
(x)
∂u
∂x
j
− a(x)u,
a
ij
a Ω
a
ij
= a
ji
∈ C
1
(Ω), a ∈ C( Ω),
n
X
i,j=1
a
ij
(x)ξ
i
ξ
j
≥ β
n
X
i=1
ξ
2
i
∀x ∈ Ω, β = const > 0, a(x) ≥ 0.
n
X
i,j=1
a
ij
(x)ξ
i
ξ
j
,
L
Ω Ω
Q
T
u|
Γ
= 0 (0, T ]
u|
t=0
= ϕ
0
(x),
∂u
∂t
t=0
= ϕ
1
(x)
Ω.
u(x, t) = v( x)T (t).