ϕ
α(x)ϕ(x) =
Z
b
a
K(x, y)ϕ(y)dy + f(x), x ∈ [a, b],
α f K(·, ·) ϕ
K : [a, b] × [a, b] → R ( C)
f
α(x) ≡ 1
ϕ(x) =
Z
b
a
K(x, y)ϕ(y)dy + f(x).
f = 0
α = 0
Z
b
a
K(x, y)ϕ(y)dy = −f (x),
A
[Aϕ](x) =
Z
b
a
K(x, y)ϕ(y)dy.
ϕ(x) − [Aϕ] (x) = f.
λ
ϕ(x) − λ[Aϕ](x) = f.
λ λ ϕ
ϕ(x) − λ[Aϕ](x) = 0,