=
2
r
4
[xr(r − ρ) + ρx(r −ρ) + ξρ
2
+ R
2
(x − ξ)].
ρ ≥ 2R R ≤ ρ/2 r ≥ ρ − R ≥ ρ/2 ⇒ 1/r ≤ 2/ρ
|x| ≤ ρ |x − ξ|/r ≤ r |r − ρ| ≤ R |ξ| ≤ R
|
∂
∂x
(
ρ
2
− R
2
r
2
)| ≤
2|x||r − ρ|
r
3
+
2|x||r − ρ|ρ
r
4
+
2|ξ|ρ
2
r
4
+
2R
2
|x − ξ|
r
4
≤
88R
ρ
2
.
|
∂u(x)
∂x
| ≤
88R
ρ
2
1
2πR
Z
Γ
R
|u(y)|ds
y
≤
M
R
ρ
2
|x| ≥ 2R.
M
R
= 88M
′
R
M
′
R
= sup
|y|=2R
|u(y)|
|∂u/∂y|
C
R
= sup
|x|=2R
|u(x)|
O(1/|x|
2
)
∆u = 0, x ∈ Ω, u|
Γ
a
= g
Ω = {x = (x, y, z) ∈ R
3
: |x| < a}
∆u = 0, x ∈ Ω
e
, u|
Γ
a
= g, u(x) = o(1) |x| → ∞
Ω
e
= R
3
\Ω Ω Γ
a
= ∂Ω
k(x, y) =
a
2
− |x|
2
|x − y|
3
, x ∈ R
3
\ Γ
a
, y ∈ Γ
a
,