′
Γ ∈ C
2,α
0 <
α < 1
u
+
∈ C
2,α
(Ω) u
−
∈ C
2,α
(Ω
e
)
Ω
′
= Ω
kuk
C
2,α
(
Ω)
≤ Ckρk
C
α
(Ω)
.
Γ u
x ∈ Γ
Γ R
n
u
Γ
˜
Ω
Ω ρ Ω
u(x) =
Z
˜
Ω
E
n
(x, y)˜ρ(y)dy.
˜ρ
˜ρ(x) = ρ(x) , x ∈ Ω ˜ρ(x) = 0, x ∈
˜
Ω\Ω.
(
˜
Ω, ˜ρ)
′
u|
˜
Ω
∈ C
2
(
˜
Ω)
u ∈ C
∞
(Ω
e
) u ∈ C
2
(R
n
)
C
l,α
(Ω)
˙
C
l,α
(Ω) = {ρ ∈ C
l,α
(Ω) : ˜ρ ∈ C
l,α
(R
n
)}, l ∈ N, 0 < α < 1,
˙
C
α
(Ω) =
˙
C
0,α
(Ω).
ρ ∈
˙
C
α
(Ω)
u C
2,α
(R
n
)
Ω
′
⊂ R
n
kuk
C
2,α
(
Ω
′
)
≤ Ckρk
C
α
(Ω)
.
C Ω
′
, n α
′
˜ρ
ρ(x) x → x
0
∈ Γ
ρ(x) x → x
0
∈ Γ