Ω
2
Ω
H(Ω)
Ω
u ∈ H(Ω) ∩ C(Ω) u : Ω → R
Ω Ω
u ∈ H( Ω)∩C(Ω)
Γ
m ≡ min
x∈Γ
u(x) < u(x) < max
x∈Γ
u(x) ≡ M ∀x ∈ Ω.
Ω u
M m
u Ω u
M m Ω
M m Γ Ω
u ∈ H( Ω) ∩C(Ω) Γ
u(x) ≡ 0 Ω
u Ω
u = 0 Ω
u ∈ H(Ω) ∩ C(Ω)
Γ u Ω
u, v ∈ H(Ω) ∩ C(Ω)
u ≤ v Γ u ≤ v Ω
v −u Ω Ω
Γ v − u ≥ 0 Ω
v ≥ 0 u, v ∈ H(Ω) ∩ C(Ω)
|u| ≤ v Γ.
|u| ≤ v Ω
−v ≤ u ≤ v
Γ −v ≤ u ≤ v Ω
|u| ≤ v Ω
v
Ω u Γ
u