a
k
b
k
ρ → a
u(a, ϕ) =
∞
X
k=0
a
k
(a
k
coskϕ + b
k
sinkϕ) = g(ϕ).
g
(i) g ∈ C
0
[0, 2π] g(0) = g(2π)
g
g(ϕ) =
α
0
2
+
∞
X
k=1
(α
k
coskϕ + β
k
sinkϕ),
α
0
=
1
π
2π
Z
0
g(ψ)dψ, α
k
=
1
π
2π
Z
0
g(ψ)coskψdψ, β
k
=
1
π
2π
Z
0
g(ψ)sinkψdψ, k = 1, 2, ... .
a
k
b
k
a
0
= α
0
/2 a
k
= α
k
/a
k
b
k
= β
k
/a
k
k = 1, 2, ...
u(ρ, ϕ) =
α
0
2
+
∞
X
k=1
u
k
(ρ, ϕ) ≡
α
0
2
+
∞
X
k=1
ρ
a
k
(α
k
coskϕ + β
k
sinkϕ).
u
u(ρ, ϕ) =
α
0
2
+
∞
X
k=1
a
ρ
k
(α
k
coskϕ + β
k
sinkϕ) .
Ω Ω
e
Ω
ρ
0
= {(ρ, ϕ) : 0 ≤ ρ ≤ ρ
0
, ϕ ∈ [0, 2π)} ρ
0
< a
X
k
∂u
k
∂ρ
,
X
k
∂
2
u
k
∂ρ
2
,
X
k
∂u
k
∂ϕ
,
X
k
∂
2
u
k
∂ϕ
2
,
(i) α
k
β
k
g
|α
0
|, |α
k
| |β
k
| < M = const ∀k = 1, 2, ... .