E
n
r = |x−y|
r = |x − y|
E
n
E
n
R
n
× R
n
→ R
x y E
n
(x, ·) y
x
E
n
(·, y)
E
n
(·, y)
∆
x
E
n
(x, y) = −δ(x, y).
x ∆ E
n
x δ(·, y) n δ
y ∈ Ω δ
δ(x, y)
y
R
∞
−∞
δ(x, y)dx
δ(x, y)
δ(x, y)
δ
D(R
n
) R
n
< δ(x, y), ϕ >= ϕ(y) ∀ϕ ∈ D( R
n
) < ·, ϕ >
ϕ ∈ D(R
n
)
E
n
(·, y)
E
n
(·, y)
Z
R
n
E
n
(x, y)∆ϕ(x) dx = −ϕ(y) ∀ϕ ∈ D(R
n
).