P, Q R
Z
Ω
∂P
∂x
+
∂Q
∂y
+
∂R
∂z
dx =
Z
Γ
(P cos α + Q cos β + R cos γ) dσ,
x = x y z σ
α, β γ n Γ
i, j k
Z
Ω
divv
x =
Z
Γ
v
n
σ ≡
Z
Γ
v · n
σ, v
n
≡ v · n.
v v
v = P i + Qj + Rk, divv =
∂P
∂x
+
∂Q
∂y
+
∂R
∂z
.
P = uv, Q = 0, R = 0
Z
Ω
∂
∂x
(uv)dx ≡
Z
Ω
∂u
∂x
v + u
∂v
∂x
dx =
Z
Γ
uv cos αdσ.
x x
i
Z
Ω
∂u
∂x
i
vdx = −
Z
Ω
u
∂v
∂x
i
dx +
Z
Γ
uv cos(n, x
i
)dσ,
R
3
P = u∂v/∂x Q = u∂v/∂y R = u∂v/∂z
Z
Ω
u∆v
x =
Z
Γ
u
∂v
∂n
σ −
Z
Ω
∇u · ∇v x.
∇u · ∇v =
∂u
∂x
∂v
∂x
+
∂u
∂y
∂v
∂y
+
∂u
∂z
∂v
∂z
,
∂v/∂n
∂v
∂n
= ∇v · n =
∂v
∂x
cos α +
∂v
∂y
cos β +
∂v
∂z
cos γ
Γ.