(0, 0) R x
K u
u(x) =
1
2π
Z
2π
0
u(R, ψ)
R
2
− ρ
2
R
2
+ ρ
2
− 2Rρ cos(ϕ − ψ)
dψ, ρ = |x|.
R − ρ
R + ρ
u(0, 0) ≤ u(x) ≤
R + ρ
R − ρ
u(0, 0).
R → ∞ u(0, 0) ≤ u(x) ≤ u(0, 0) ⇒ u(x) = u(0, 0)
u
R
2
u
x
0
x
0
u u
x
0
u
x
0
x
0
x
0
K R x
0
x
0
u
1
K u K
u − u
1
≡ v v K
x
0
∂K v
x
0
∈ K x
0
v(x
0
) ≡ 0
u(x
0
) = u
1
(x
0
)
v
ε
(x, x
0
) =
M ln(|x − x
0
|/R)
ln(ε/R)
.
M = sup
x∈K
|v(x)| ε x
0
K
ε
= {x ∈ K : ε < |x−x
0
|} v
ε
K
ε
K
ε
K
ε
ρ = R M ρ = ε v
∂K
ε
K
ε
|v(x)| ≤ v
ε
(x, x
0
).
v
ε
v
∂K
ε
K
ε
x
0
|v(x
0
)| ≤ v
ε
(x
0
, x
0
) = M
ln(|x
0
− x
0
|/R)
ln(ε/R)
.