n ≥ 3
Γ Ω µ
S
x ∈ Γ
n = n(x) r
0
> 0
x ∈ Γ Γ∪B
r
0
(x) Γ ∪B
r
0
(x)
x Γ
n
x
λ ≤ 1 Γ
λ ≤ 1 C > 0
|n(x) − n (y)| ≤ C|x − y|
λ
∀x, y ∈ Γ.
C
1
C
2
λ ≤ 1
˜
C
1,λ
C
2
⊂
˜
C
1,λ
⊂ C
1
λ ≤ 1
Ω R
n
Γ
˜
C
1,λ
0 < λ < 1
µ ∈ C(Γ)
x ∈ R
n
x ∈ Γ
u(x) = O(|x|
1−n
) |x| → ∞.
R
n
\ Γ u
u ∈ C
∞
(R
n
\ Γ)
x